Do you want to publish a course? Click here

Revisiting Type-II see-saw: Present Limits and Future Prospects at LHC

86   0   0.0 ( 0 )
 Added by Saiyad Ashanujjaman
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The type-II see-saw mechanism based on the annexation of the Standard Model by weak gauge triplet scalar field proffers a natural explanation for the very minuteness of neutrino masses. Noting that the phenomenology for the non-degenerate triplet Higgs spectrum is substantially contrasting than that for the degenerate one, we perform a comprehensive study for an extensive model parameter space parametrised by the triplet scalar vacuum expectation value (VEV), the mass-splitting between the triplet-like doubly and singly charged scalars and the mass of the doubly charged scalar. Considering all Drell-Yan production mechanisms for the triplet-like scalars and taking into account the all-encompassing complexity of their decays, we derive the most stringent 95% CL lower limits on the mass of the doubly charged scalar for a vast model parameter space by implementing already existing direct collider searches by CMS and ATLAS. These estimated limits are beyond those from the existing LHC searches by approximately 50-230 GeV. However, we also find that a specific region of the parameter space is not constrained by the LHC searches. Then, we forecast future limits by extending an ATLAS search at high-luminosity, and we propose a search strategy that yields improved limits for a part of the parameter space.

rate research

Read More

The See-Saw mechanism provides a nice way to explain why neutrino masses are so much lighter than their charged lepton partners. It also provides a nice way to explain baryon asymmetry in our universe via the leptogenesis mechanism. In this talk we review leptogenesis and LHC physics in a See-Saw model proposed in 1989, now termed the Type III See-Saw model. In this model, $SU(2)_L$ triplet leptons are introduced with the neutral particles of the triplets playing the role of See-Saw. The triplet leptons have charged partners with standard model gauge interactions resulting in many new features. The gauge interactions of these particles make it easier for leptognesis with low masses, as low as a TeV is possible. The gauge interactions also make the production and detection of triplet leptons at LHC possible. The See-Saw mechanism and leptogenesis due to Type III See-Saw may be tested at LHC.
The couplings of the low scale type I see-saw model are severely constrained by the requirement of reproducing the correct neutrino mass and mixing parameters, by the non-observation of lepton number and charged lepton flavour violating processes and by electroweak precision data. We show that all these constraints still allow for the possibility of an exotic Higgs decay channel into a light neutrino and a heavy neutrino with a sizable branching ratio. We also estimate the prospects to observe this decay at the LHC and discuss its complementarity to the indirect probes of the low scale type I see-saw model from experiments searching for the $muto egamma$ decay.
The arbitrariness of Yukawa couplings can be reduced by the imposition of some flavor symmetries and/or by the realization of texture zeros. We review neutrino Yukawa textures with zeros within the framework of the type-I seesaw with three heavy right chiral neutrinos and in the basis where the latter and the charged leptons are mass diagonal. An assumed non-vanishing mass of every ultralight neutrino and the observed non-decoupling of any neutrino generation allow a maximum of four zeros in the Yukawa coupling matrix $Y_ u$ in family space. There are seventy two such textures. We show that the requirement of an exact $mutau$ symmetry, coupled with the observational constraints, reduces these seventy two allowed textures to only four corresponding to just two different forms of the light neutrino mass matrix $M_{ u A}/M_{ u B}$, resulting in an inverted/normal mass ordering. The effect of each of these on measurable quantities can be described, apart from an overall factor of the neutrino mass scale, in terms of two real parameters and a phase angle all of which are within very constrained ranges. The masses and Majorana phases of ultralight neutrinos are predicted within definite ranges with $3sigma$ laboratory and cosmological observational inputs. The rate for $0 ubetabeta$ decay, though generally below the reach of planned experiments, could approach it in some parameteric regions. Within the same framework, we also study Yukawa textures with a fewer number of zeros, but with exact $mutau$ symmetry. We further formulate the detailed scheme of the explicit breaking of $mutau$ symmetry in terms of three small parameters for allowed four zero textures. The observed sizable mixing between the first and third generations of neutrinos is shown to follow for a suitable choice of these symmetry breaking parameters.
We revisit the global fit to electroweak precision observables in the Standard Model and present model-independent bounds on several general new physics scenarios. We present a projection of the fit based on the expected experimental improvements at future $e^+ e^-$ colliders, and compare the constraining power of some of the different experiments that have been proposed. All results have been obtained with the HEPfit code.
We review the present electroweak precision data constraints on the mediators of the three types of see-saw mechanisms. Except in the see-saw mechanism of type I, with the heavy neutrino singlets being mainly produced through their mixing with the Standard Model leptons, LHC will be able to discover or put limits on new scalar (see-saw of type II) and lepton (see-saw of type III) triplets near the TeV. If discovered, it may be possible in the simplest models to measure the light neutrino mass and mixing properties that neutrino oscillation experiments are insensitive to.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا