Do you want to publish a course? Click here

Constraining the radius and atmospheric properties of directly imaged exoplanets through multi-phase observations

79   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The theory of remote sensing shows that observing a planet at multiple phase angles ($alpha$) is a powerful strategy to characterize its atmosphere. Here, we analyse how the information contained in reflected-starlight spectra of exoplanets depends on the phase angle, and the potential of multi-phase measurements to better constrain the atmospheric properties and the planet radius ($R_p$). We simulate spectra (500-900 nm) at $alpha$=37$^circ$, 85$^circ$ and 123$^circ$ with spectral resolution $R$~125-225 and signal-to-noise ratio $S/N$=10. Assuming a H$_2$-He atmosphere, we use a seven-parameter model that includes the atmospheric methane abundance ($f_{CH_4}$), the optical properties of a cloud layer and $R_p$. All these parameters are assumed unknown a priori and explored with an MCMC retrieval method. We find that no single-phase observation can robustly identify whether the atmosphere has clouds or not. A single-phase observation at $alpha$=123$^circ$ and $S/N$=10 can constrain $R_p$ with a maximum error of 35%, regardless of the cloud coverage. Combining small (37$^circ$) and large (123$^circ$) phase angles is a generally effective strategy to break multiple parameter degeneracies. This enables to determine the presence or absence of a cloud and its main properties, $f_{CH_4}$ and $R_p$ in all the explored scenarios. Other strategies, such as doubling $S/N$ to 20 for a single-phase observation or combining small (37$^circ$) and moderate (85$^circ$) phase angles, fail to achieve this. We show that the improvements in multi-phase retrievals are associated with the shape of the scattering phase function of the cloud aerosols and that the improvement is more modest for isotropically-scattering aerosols. We finally discuss that misidentifying the background gas in the retrievals of super-Earth observations leads to a systematic underestimate of the absorbing gas abundance.



rate research

Read More

The Mid-Infrared instrument (MIRI) on board the James Webb Space Telescope will perform the first ever characterization of young giant exoplanets observed by direct imaging in the 5-28 microns spectral range. This wavelength range is key for both determining the bolometric luminosity of the cool known exoplanets and for accessing the strongest ammonia bands. In conjunction with shorter wavelength observations, MIRI will enable a more accurate characterization of the exoplanetary atmospheric properties. Here we consider a subsample of the currently known exoplanets detected by direct imaging and we discuss their detectability with MIRI, either using the coronagraphic or the spectroscopic modes. By using the Exo-REM atmosphere model we calculate the mid-infrared emission spectra of fourteen exoplanets, and we simulate MIRI coronagraphic or spectroscopic observations. Specifically we analyze four coronagraphic observational setups, which depend on (i) the target-star and reference-star offset (0, 3, 14 mas), (ii) the wave-front-error (130, 204 nm rms), (iii) the telescope jitter amplitude (1.6, 7 mas). We then determine the signal-to-noise and integration time values for the coronagraphic targets whose planet-to-star contrasts range from 3.9 to 10.1 mag. We conclude that all the MIRI targets should be observable with different degrees of difficulty, which depends on the final in-flight instrument performances. Furthermore, we test for detection of ammonia in the atmosphere of the coolest targets. Finally, we present the case of HR 8799 b to discuss what MIRI observations can bring to the knowledge of a planetary atmosphere, either alone or in combination with shorter wavelength observations.
Recently, Teachey, Kipping, and Schmitt (2018) reported the detection of a candidate exomoon, tentatively designated Kepler-1625b I, around a giant planet in the Kepler field. The candidate exomoon would be about the size and mass of Neptune, considerably larger than any moon in our Solar System, and if confirmed, would be the first in a new class of giant moons or binary planets. Motivated by the large mass ratio in the Kepler-1625b planet and satellite system, we investigate the detectability of similarly massive exomoons around directly imaged exoplanets via Doppler spectroscopy. The candidate moon around Kepler-1625b would induce a radial velocity signal of about 200 m/s on its host planet, large enough that similar moons around directly imaged planets orbiting bright, nearby stars might be detected with current or next generation instrumentation. In addition to searching for exomoons, a radial velocity survey of directly imaged planets could reveal the orientations of the planets spin axes, making it possible to identify Uranus analogs.
114 - Giada N. Arney 2020
Oxygen and methane are considered to be the canonical biosignatures of modern Earth, and the simultaneous detection of these gases in a planetary atmosphere is an especially strong biosignature. However, these gases may be challenging to detect together in the planetary atmospheres because photochemical oxygen radicals destroy methane. Previous work has shown that the photochemical lifetime of methane in oxygenated atmospheres is longer around M dwarfs, but M dwarf planet habitability may be hindered by extreme stellar activity and evolution. Here, we use a 1-D photochemical-climate model to show that K dwarf stars also offer a longer photochemical lifetime of methane in the presence of oxygen compared to G dwarfs. For example, we show that a planet orbiting a K6V star can support about an order of magnitude more methane in its atmosphere compared to an equivalent planet orbiting a G2V star. In the reflected light spectra of worlds orbiting K dwarf stars, strong oxygen and methane features could be observed at visible and near-infrared wavelengths. Because K dwarfs are dimmer than G dwarfs, they offer a better planet-star contrast ratio, enhancing the signal-to-noise (SNR) possible in a given observation. For instance, a 50 hour observation of a planet at 7 pc with a 15-m telescope yields SNR = 9.2 near 1 um for a planet orbiting a solar-type G2V star, and SNR = 20 for the same planet orbiting a K6V star. In particular, nearby mid-late K dwarfs such as 61 Cyg A/B, Epsilon Indi, Groombridge 1618, and HD 156026 may be excellent targets for future biosignature searches.
We present detections of methane in R of $sim$1300, L band spectra of VHS 1256 b and PSO 318.5, two low gravity, red, late L dwarfs that share the same colors as the HR 8799 planets. These spectra reveal shallow methane features, which indicate VHS 1256 b and PSO 318.5 have photospheres that are out of chemical equilibrium. Directly imaged exoplanets usually have redder near infrared colors than the field-age population of brown dwarfs on a color magnitude diagram. These objects along the L to T transition show reduced methane absorption and evidence of photospheric clouds. Compared to the H and K bands, L band (3 micron - 4 micron) spectroscopy provides stronger constraints on the methane abundances of brown dwarfs and directly imaged exoplanets that have similar effective temperatures as L to T transition objects. When combined with near infrared spectra, the L band extends our conventional wavelength coverage, increasing our understanding of atmospheric cloud structure. Our model comparisons show relatively strong vertical mixing and photospheric clouds can explain the molecular absorption features and continua of VHS 1256 b and PSO 318.5. We also discuss the implications of this work for future exoplanet focused instruments and observations with the James Webb Space Telescope.
The circumstellar disk of PDS 70 hosts two forming planets, which are actively accreting gas from their environment. In this work, we report the first detection of PDS 70 b in the Br$alpha$ and $M$ filters with VLT/NACO, a tentative detection of PDS 70 c in Br$alpha$, and a reanalysis of archival NACO $L$ and SPHERE $H23$ and $K12$ imaging data. The near side of the disk is also resolved with the Br$alpha$ and $M$ filters, indicating that scattered light is non-negligible at these wavelengths. The spectral energy distribution of PDS 70 b is well described by blackbody emission, for which we constrain the photospheric temperature and photospheric radius to $T_mathrm{eff}=1193 pm 20$ K and $R=3.0 pm 0.2$ $R_mathrm{J}$. The relatively low bolometric luminosity, $log(L/L_odot) = -3.79 pm 0.02$, in combination with the large radius, is not compatible with standard structure models of fully convective objects. With predictions from such models, and adopting a recent estimate of the accretion rate, we derive a planetary mass and radius in the range of $M_mathrm{p}approx 0.5-1.5$ $M_mathrm{J}$ and $R_mathrm{p}approx 1-2.5$ $R_mathrm{J}$, independently of the age and post-formation entropy of the planet. The blackbody emission, large photospheric radius, and the discrepancy between the photospheric and planetary radius suggests that infrared observations probe an extended, dusty environment around the planet, which obscures the view on its molecular composition. Finally, we derive a rough upper limit on the temperature and radius of potential excess emission from a circumplanetary disk, $T_mathrm{eff}lesssim256$ K and $Rlesssim245$ $R_mathrm{J}$, but we do find weak evidence that the current data favors a model with a single blackbody component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا