Stationarity and inference in multistate promoter models of stochastic gene expression via stick-breaking measures


Abstract in English

In a general stochastic multistate promoter model of dynamic mRNA/protein interactions, we identify the stationary joint distribution of the promoter state, mRNA, and protein levels through an explicit `stick-breaking construction of interest in itself. This derivation is a constructive advance over previous work where the stationary distribution is solved only in restricted cases. Moreover, the stick-breaking construction allows to sample directly from the stationary distribution, permitting inference procedures and model selection. In this context, we discuss numerical Bayesian experiments to illustrate the results.

Download