Do you want to publish a course? Click here

Gravitational wave propagation beyond general relativity: waveform distortions and echoes

98   0   0.0 ( 0 )
 Added by Macarena Lagos
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the cosmological propagation of gravitational waves (GWs) beyond general relativity (GR) across homogeneous and isotropic backgrounds. We consider scenarios in which GWs interact with an additional tensor field and use a parametrized phenomenological approach that generically describes their coupled equations of motion. We analyze four distinct classes of derivative and non-derivative interactions: mass, friction, velocity, and chiral. We apply the WKB formalism to account for the cosmological evolution and obtain analytical solutions to these equations. We corroborate these results by analyzing numerically the propagation of a toy GW signal. We then proceed to use the analytical results to study the modified propagation of realistic GWs from merging compact binaries, assuming that the GW signal emitted is the same as in GR. We generically find that tensor interactions lead to copies of the originally emitted GW signal, each one with its own possibly modified dispersion relation. These copies can travel coherently and interfere with each other leading to a scrambled GW signal, or propagate decoherently and lead to echoes arriving at different times at the observer that could be misidentified as independent GW events. Depending on the type of tensor interaction, the detected GW signal may exhibit amplitude and phase distortions with respect to a GW waveform in GR, as well as birefringence effects. We discuss observational probes of these tensor interactions with both individual GW events, as well as population studies for both ground- and space-based detectors.



rate research

Read More

Although general relativity (GR) has been precisely tested at the solar system scale, precise tests at a galactic or cosmological scale are still relatively insufficient. Here, in order to test GR at the galactic scale, we use the newly compiled galaxy-scale strong gravitational lensing (SGL) sample to constrain the parameter $gamma_{PPN}$ in the parametrized post-Newtonian (PPN) formalism. We employ the Pantheon sample of type Ia supernovae observation to calibrate the distances in the SGL systems using the Gaussian Process method, which avoids the logical problem caused by assuming a cosmological model within GR to determine the distances in the SGL sample. Furthermore, we consider three typical lens models in this work to investigate the influences of the lens mass distributions on the fitting results. We find that the choice of the lens models has a significant impact on the constraints on the PPN parameter $gamma_{PPN}$. We use the Bayesian information criterion as an evaluation tool to make a comparison for the fitting results of the three lens models, and we find that the most reliable lens model gives the result of $gamma_{PPN}=1.065^{+0.064}_{-0.074}$, which is in good agreement with the prediction of $gamma_{PPN}=1$ by GR. As far as we know, our 6.4% constraint result is the best result so far among the recent works using the SGL method.
Low-frequency gravitational-wave astronomy can perform precision tests of general relativity and probe fundamental physics in a regime previously inaccessible. A space-based detector will be a formidable tool to explore gravitys role in the cosmos, potentially telling us if and where Einsteins theory fails and providing clues about some of the greatest mysteries in physics and astronomy, such as dark matter and the origin of the Universe.
Alternative theories of gravity predict modifications in the propagation of gravitational waves (GW) through space-time. One of the smoking-gun predictions of such theories is the change in the GW luminosity distance to GW sources as a function of redshift relative to the electromagnetic (EM) luminosity distance expected from EM probes. We propose a multi-messenger test of the theory of general relativity from the propagation of gravitational waves by combining EM and GW observations to resolve these issues from GW sources without EM counterparts (which are also referred to as dark standard sirens). By using the relation between the geometric distances accessible from baryon acoustic oscillation measurements, and luminosity distance measurements from the GW sources, we can measure any deviation from the general theory of relativity via the GW sources of unknown redshift that will be detectable by networks of GW detectors such as LIGO, Virgo, and KAGRA. Using this technique, the fiducial value of the frictional term can be measured to a precision $Xi_0=0.98^{+0.04}_{-0.23}$ after marginalizing over redshift dependence, cosmological parameters, and GW bias parameters with $sim 3500$ dark standard sirens of masses $30,rm M_odot$ each distributed up to redshift $z=0.5$. For a fixed redshift dependence, a value of $Xi_0=0.99^{+0.02}_{-0.02}$ can be measured with a similar number of dark sirens. Application of our methodology to the far more numerous dark standard sirens detectable with next generation GW detectors, such as LISA, Einstein Telescope and Cosmic Explorer, will allow achievement of higher accuracy than possible from use of bright standard sirens.
Recent work has shown that modified gravitational wave (GW) propagation can be a powerful probe of dark energy and modified gravity, specific to GW observations. We use the technique of Gaussian processes, that allows the reconstruction of a function from the data without assuming any parametrization, to measurements of the GW luminosity distance from simulated joint GW-GRB detections, combined with measurements of the electromagnetic luminosity distance by simulated DES data. For the GW events we consider both a second-generation LIGO/Virgo/Kagra (HVLKI) network, and a third-generation detector such as the Einstein Telescope. We find that the HVLKI network at target sensitivity, with $O(15)$ neutron star binaries with electromagnetic counterpart, could already detect deviations from GR at a level predicted by some modified gravity models, and a third-generation detector such as ET would have a remarkable discovery potential. We discuss the complementarity of the Gaussian processes technique to the $(Xi_0,n)$ parametrization of modified GW propagation.
108 - Toshiya Namikawa 2020
We present a formulation of observed number density fluctuations of gravitational-wave (GW) sources in a three dimensional space. In GW observations, redshift identification for each GW source is a challenging issue, in particular, for high redshift sources. The use of observed luminosity distance as a distance indicator will be a simple yet optimal way for measuring the clustering signal. We derive the density fluctuations of GW sources estimated from observed luminosity distance and sky position of each source. The density fluctuations are distorted as similar to the so-called redshift space distortions in galaxy surveys but with several differences. We then show the two-point correlation function and multipole power spectrum in the presence of the distortion effect. We find that the line-of-sight derivative of the lensing convergence, which does not appear in the redshift-space distortions, leads to significant distortions in the observed correlation function. In addition, the lensing effect affects higher-order multipole power spectra and its signal-to-noise at high redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا