Do you want to publish a course? Click here

A Benchmark for Spray from Nearby Cutting Vehicles

111   0   0.0 ( 0 )
 Added by Stefanie Walz
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Current driver assistance systems and autonomous driving stacks are limited to well-defined environment conditions and geo fenced areas. To increase driving safety in adverse weather conditions, broadening the application spectrum of autonomous driving and driver assistance systems is necessary. In order to enable this development, reproducible benchmarking methods are required to quantify the expected distortions. In this publication, a testing methodology for disturbances from spray is presented. It introduces a novel lightweight and configurable spray setup alongside an evaluation scheme to assess the disturbances caused by spray. The analysis covers an automotive RGB camera and two different LiDAR systems, as well as downstream detection algorithms based on YOLOv3 and PV-RCNN. In a common scenario of a closely cutting vehicle, it is visible that the distortions are severely affecting the perception stack up to four seconds showing the necessity of benchmarking the influences of spray.



rate research

Read More

78 - Qi Liu , Shihua Yuan , Zirui Li 2020
Unmanned ground vehicles have a huge development potential in both civilian and military fields, and have become the focus of research in various countries. In addition, high-precision, high-reliability sensors are significant for UGVs efficient operation. This paper proposes a brief review on sensor technologies for UGVs. Firstly, characteristics of various sensors are introduced. Then the strengths and weaknesses of different sensors as well as their application scenarios are compared. Furthermore, sensor applications in some existing UGVs are summarized. Finally, the hotspots of sensor technologies are forecasted to point the development direction.
In this work, we propose the worlds first closed-loop ML-based planning benchmark for autonomous driving. While there is a growing body of ML-based motion planners, the lack of established datasets and metrics has limited the progress in this area. Existing benchmarks for autonomous vehicle motion prediction have focused on short-term motion forecasting, rather than long-term planning. This has led previous works to use open-loop evaluation with L2-based metrics, which are not suitable for fairly evaluating long-term planning. Our benchmark overcomes these limitations by introducing a large-scale driving dataset, lightweight closed-loop simulator, and motion-planning-specific metrics. We provide a high-quality dataset with 1500h of human driving data from 4 cities across the US and Asia with widely varying traffic patterns (Boston, Pittsburgh, Las Vegas and Singapore). We will provide a closed-loop simulation framework with reactive agents and provide a large set of both general and scenario-specific planning metrics. We plan to release the dataset at NeurIPS 2021 and organize benchmark challenges starting in early 2022.
Object handover is a common human collaboration behavior that attracts attention from researchers in Robotics and Cognitive Science. Though visual perception plays an important role in the object handover task, the whole handover process has been specifically explored. In this work, we propose a novel rich-annotated dataset, H2O, for visual analysis of human-human object handovers. The H2O, which contains 18K video clips involving 15 people who hand over 30 objects to each other, is a multi-purpose benchmark. It can support several vision-based tasks, from which, we specifically provide a baseline method, RGPNet, for a less-explored task named Receiver Grasp Prediction. Extensive experiments show that the RGPNet can produce plausible grasps based on the givers hand-object states in the pre-handover phase. Besides, we also report the hand and object pose errors with existing baselines and show that the dataset can serve as the video demonstrations for robot imitation learning on the handover task. Dataset, model and code will be made public.
85 - Tianjiao Li , Jun Liu , Wei Zhang 2021
Human behavior understanding with unmanned aerial vehicles (UAVs) is of great significance for a wide range of applications, which simultaneously brings an urgent demand of large, challenging, and comprehensive benchmarks for the development and evaluation of UAV-based models. However, existing benchmarks have limitations in terms of the amount of captured data, types of data modalities, categories of provided tasks, and diversities of subjects and environments. Here we propose a new benchmark - UAVHuman - for human behavior understanding with UAVs, which contains 67,428 multi-modal video sequences and 119 subjects for action recognition, 22,476 frames for pose estimation, 41,290 frames and 1,144 identities for person re-identification, and 22,263 frames for attribute recognition. Our dataset was collected by a flying UAV in multiple urban and rural districts in both daytime and nighttime over three months, hence covering extensive diversities w.r.t subjects, backgrounds, illuminations, weathers, occlusions, camera motions, and UAV flying attitudes. Such a comprehensive and challenging benchmark shall be able to promote the research of UAV-based human behavior understanding, including action recognition, pose estimation, re-identification, and attribute recognition. Furthermore, we propose a fisheye-based action recognition method that mitigates the distortions in fisheye videos via learning unbounded transformations guided by flat RGB videos. Experiments show the efficacy of our method on the UAV-Human dataset. The project page: https://github.com/SUTDCV/UAV-Human
We are interested in understanding whether retrieval-based localization approaches are good enough in the context of self-driving vehicles. Towards this goal, we introduce Pit30M, a new image and LiDAR dataset with over 30 million frames, which is 10 to 100 times larger than those used in previous work. Pit30M is captured under diverse conditions (i.e., season, weather, time of the day, traffic), and provides accurate localization ground truth. We also automatically annotate our dataset with historical weather and astronomical data, as well as with image and LiDAR semantic segmentation as a proxy measure for occlusion. We benchmark multiple existing methods for image and LiDAR retrieval and, in the process, introduce a simple, yet effective convolutional network-based LiDAR retrieval method that is competitive with the state of the art. Our work provides, for the first time, a benchmark for sub-metre retrieval-based localization at city scale. The dataset, additional experimental results, as well as more information about the sensors, calibration, and metadata, are available on the project website: https://uber.com/atg/datasets/pit30m
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا