GrADE: A graph based data-driven solver for time-dependent nonlinear partial differential equations


Abstract in English

The physical world is governed by the laws of physics, often represented in form of nonlinear partial differential equations (PDEs). Unfortunately, solution of PDEs is non-trivial and often involves significant computational time. With recent developments in the field of artificial intelligence and machine learning, the solution of PDEs using neural network has emerged as a domain with huge potential. However, most of the developments in this field are based on either fully connected neural networks (FNN) or convolutional neural networks (CNN). While FNN is computationally inefficient as the number of network parameters can be potentially huge, CNN necessitates regular grid and simpler domain. In this work, we propose a novel framework referred to as the Graph Attention Differential Equation (GrADE) for solving time dependent nonlinear PDEs. The proposed approach couples FNN, graph neural network, and recently developed Neural ODE framework. The primary idea is to use graph neural network for modeling the spatial domain, and Neural ODE for modeling the temporal domain. The attention mechanism identifies important inputs/features and assign more weightage to the same; this enhances the performance of the proposed framework. Neural ODE, on the other hand, results in constant memory cost and allows trading of numerical precision for speed. We also propose depth refinement as an effective technique for training the proposed architecture in lesser time with better accuracy. The effectiveness of the proposed framework is illustrated using 1D and 2D Burgers equations. Results obtained illustrate the capability of the proposed framework in modeling PDE and its scalability to larger domains without the need for retraining.

Download