Do you want to publish a course? Click here

Ground state pseudoscalar mesons on the light front: from the light to heavy sector

87   0   0.0 ( 0 )
 Added by Chao Shi
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We extract the leading Fock-state light front wave functions (LF-LFWFs) of both the light and heavy pseudoscalar mesons, e.g., the pion (at masses of 130 MeV, 310 MeV and 690 MeV), $eta_c$ and $eta_b$, from their covariant Bethe-Salpeter wave functions within the rainbow-ladder (RL) truncation. It is shown that the LF-LFWFs get narrower in $x$ (the longitudinal momentum fraction of meson carried by the quark) with the increasing current quark mass, and the leading twist parton distribution amplitudes (PDAs) inherit this feature. Meanwhile, we find in the pion the LF-LFWFs only contribute around 30% to the total Fock-state normalization, indicating the presence of significant higher Fock-states within. In contrast, in the $eta_c$ and $eta_b$ the LF-LFWFs contribute more than $90$%, suggesting the $Qbar{Q}$ valence Fock-state truncation as a good approximation for heavy mesons. We thus study the 3-dimensional parton distributions of the $eta_c$ and $eta_b$ with the unpolarized generalized parton distribution function (GPD) and the transverse momentum dependent parton distribution function (TMD). Through the gravitational form factors in connection with the GPD, the mass radii of the $eta_c$ and $eta_b$ in the light-cone frame are determined to be $r_{E,{rm LC}}^{eta_c} =0.150$ fm and $r_{E,{rm LC}}^{eta_b} =0.089$ fm respectively.



rate research

Read More

We study the electromagnetic form factors, decay constants and charge radii of the pion and kaon within the framework of light-front field theory formalism where we use an ansatz for the quark-meson interaction bound-state function which is symmetric under exchange of quark and antiquark momentum. The above mentioned observables are evaluated for the $+$ component of the electromagnetic current, $J^+$, in the Breit frame. We also check the invariance of these observables in other frames, whereby both the valance and the non-valence contributions have to be taken into account, and study the sensitivity of the electromagnetic form factors and charge radius to the models parameters; namely, the quark masses, $m_u=m_d$, $m_{bar s}$, and the regulator mass, $m_R$. It is found that after a fine tuning of the regulator mass, i.e. $m_R=0.6$ GeV, the model is suitable to fit the available experimental data within the theoretical uncertainties of both the pion and kaon.
The ladder kernel of the Bethe-Salpeter equation is amended by introducing a different flavor dependence of the dressing functions in the heavy-quark sector. Compared with earlier work this allows for the simultaneous calculation of the mass spectrum and leptonic decay constants of light pseudoscalar mesons, the $D_u$, $D_s$, $B_u$, $B_s$ and $B_c$ mesons and the heavy quarkonia $eta_c$ and $eta_b$ within the same framework at a physical pion mass. The corresponding Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory. A comparison with the first inverse moment of the heavy meson distribution amplitude in heavy quark effective theory is made.
We obtain the light meson mass spectroscopy from the light-front quantum chromodynamics (QCD) Hamiltonian, determined for their constituent quark-antiquark and quark-antiquark-gluon Fock components, together with a three-dimensional confinement. The eigenvectors of the light-front effective Hamiltonian provide a good quality description of the pion electromagnetic form factor, decay constant, and the valence quark distribution functions following QCD scale evolution. We also show that the pions gluon densities can be probed through the pion-nucleus induced $J/psi$ production data. Our pion parton distribution functions provide excellent agreement with $J/psi$ production data from widely different experimental conditions.
The electromagnetic form factors of light and heavy pseudoscalar mesons are calculated within two covariant constituent-quark models, a light-front and a dispersion relation approach. We investigate the details and physical origins of the model dependence of various hadronic observables: the weak decay constant, the charge radius and the elastic electromagnetic form factor.
The temperature dependence of the mass, leptonic decay constant, and width of heavy-light quark peseudoscalar and vector mesons is obtained in the framework of thermal Hilbert moment QCD sum rules. The leptonic decay constants of both pseudoscalar and vector mesons decrease with increasing $T$, and vanish at a critical temperature $T_c$, while the mesons develop a width which increases dramatically and diverges at $T_c$, where $T_c$ is the temperature for chiral-symmetry restoration. These results indicate the disappearance of hadrons from the spectral function, which then becomes a smooth function of the energy. This is interpreted as a signal for deconfinement at $T=T_c$. In contrast, the masses show little dependence on the temperature, except very close to $T_c$, where the pseudoscalar meson mass increases slightly by 10-20 %, and the vector meson mass decreases by some 20-30 %
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا