Using analogies between flow equations from the Functional Renormalization Group and flow equations from (numerical) fluid dynamics we investigate the effects of bosonic fluctuations in a bosonized Gross-Neveu model -- namely the Gross-Neveu-Yukawa model. We study this model for finite numbers of fermions at varying chemical potential and temperature in the local potential approximation. Thereby we numerically demonstrate that for any finite number of fermions and as long as the temperature is non-zero, there is no $mathbb{Z}_2$ symmetry breaking for arbitrary chemical potentials.
We use the linear $delta$ expansion, or optimized perturbation theory, to evaluate the effective potential for the two dimensional Gross-Neveu model at finite temperature and density obtaining analytical equations for the critical temperature, chemical potential and fermionic mass which include finite $N$ corrections. Our results seem to improve over the traditional large-N predictions.
We use the critical point large $N$ formalism to calculate the critical exponents corresponding to the fermion mass operator and flavour non-singlet fermion bilinear operator in the universality class of Quantum Electrodynamics (QED) coupled to the Gross-Neveu model for an $SU(N)$ flavour symmetry in $d$-dimensions. The $epsilon$ expansion of the exponents in $d$ $=$ $4$ $-$ $2epsilon$ dimensions are in agreement with recent three and four loop perturbative evaluations of both renormalization group functions of these operators. Estimates of the value of the non-singlet operator exponent in three dimensions are provided.
We study quantum critical behavior in three dimensional lattice Gross-Neveu models containing two massless Dirac fermions. We focus on two models with SU(2) flavor symmetry and either a $Z_2$ or a U(1) chiral symmetry. Both models could not be studied earlier due to sign problems. We use the fermion bag approach which is free of sign problems and compute critical exponents at the phase transitions. We estimate $ u = 0.83(1)$, $eta = 0.62(1)$, $eta_psi = 0.38(1)$ in the $Z_2$ and $ u = 0.849(8)$, $eta = 0.633(8)$, $eta_psi = 0.373(3)$ in the U(1) model.
The method of optimized perturbation theory (OPT) is used to study the phase diagram of the massless Gross-Neveu model in 2+1 dimensions. In the temperature and chemical potential plane, our results give strong support to the existence of a tricritical point and line of first order phase transition, previously only suspected to exist from extensive lattice Monte Carlo simulations. In addition of presenting these results we discuss how the OPT can be implemented in conjunction with the Landau expansion in order to determine all the relevant critical quantities.
We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in $4-epsilon$ dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order $mathcal{O}(epsilon^4)$. Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with $N=1/4$ and $N=1/2$ fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.
Jonas Stoll
,Niklas Zorbach
,Adrian Koenigstein
.
(2021)
.
"Bosonic fluctuations in the $( 1 + 1 )$-dimensional Gross-Neveu(-Yukawa) model at varying $mu$ and $T$ and finite $N$"
.
Adrian Koenigstein
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا