Do you want to publish a course? Click here

ShapeConv: Shape-aware Convolutional Layer for Indoor RGB-D Semantic Segmentation

67   0   0.0 ( 0 )
 Added by Jinming Cao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

RGB-D semantic segmentation has attracted increasing attention over the past few years. Existing methods mostly employ homogeneous convolution operators to consume the RGB and depth features, ignoring their intrinsic differences. In fact, the RGB values capture the photometric appearance properties in the projected image space, while the depth feature encodes both the shape of a local geometry as well as the base (whereabout) of it in a larger context. Compared with the base, the shape probably is more inherent and has a stronger connection to the semantics, and thus is more critical for segmentation accuracy. Inspired by this observation, we introduce a Shape-aware Convolutional layer (ShapeConv) for processing the depth feature, where the depth feature is firstly decomposed into a shape-component and a base-component, next two learnable weights are introduced to cooperate with them independently, and finally a convolution is applied on the re-weighted combination of these two components. ShapeConv is model-agnostic and can be easily integrated into most CNNs to replace vanilla convolutional layers for semantic segmentation. Extensive experiments on three challenging indoor RGB-D semantic segmentation benchmarks, i.e., NYU-Dv2(-13,-40), SUN RGB-D, and SID, demonstrate the effectiveness of our ShapeConv when employing it over five popular architectures. Moreover, the performance of CNNs with ShapeConv is boosted without introducing any computation and memory increase in the inference phase. The reason is that the learnt weights for balancing the importance between the shape and base components in ShapeConv become constants in the inference phase, and thus can be fused into the following convolution, resulting in a network that is identical to one with vanilla convolutional layers.



rate research

Read More

93 - Sihan Chen , Xinxin Zhu , Wei Liu 2021
Depth information matters in RGB-D semantic segmentation task for providing additional geometric information to color images. Most existing methods exploit a multi-stage fusion strategy to propagate depth feature to the RGB branch. However, at the very deep stage, the propagation in a simple element-wise addition manner can not fully utilize the depth information. We propose Global-Local propagation network (GLPNet) to solve this problem. Specifically, a local context fusion module(L-CFM) is introduced to dynamically align both modalities before element-wise fusion, and a global context fusion module(G-CFM) is introduced to propagate the depth information to the RGB branch by jointly modeling the multi-modal global context features. Extensive experiments demonstrate the effectiveness and complementarity of the proposed fusion modules. Embedding two fusion modules into a two-stream encoder-decoder structure, our GLPNet achieves new state-of-the-art performance on two challenging indoor scene segmentation datasets, i.e., NYU-Depth v2 and SUN-RGBD dataset.
Scene depth information can help visual information for more accurate semantic segmentation. However, how to effectively integrate multi-modality information into representative features is still an open problem. Most of the existing work uses DCNNs to implicitly fuse multi-modality information. But as the network deepens, some critical distinguishing features may be lost, which reduces the segmentation performance. This work proposes a unified and efficient feature selectionand-fusion network (FSFNet), which contains a symmetric cross-modality residual fusion module used for explicit fusion of multi-modality information. Besides, the network includes a detailed feature propagation module, which is used to maintain low-level detailed information during the forward process of the network. Compared with the state-of-the-art methods, experimental evaluations demonstrate that the proposed model achieves competitive performance on two public datasets.
We introduce 3D-SIS, a novel neural network architecture for 3D semantic instance segmentation in commodity RGB-D scans. The core idea of our method is to jointly learn from both geometric and color signal, thus enabling accurate instance predictions. Rather than operate solely on 2D frames, we observe that most computer vision applications have multi-view RGB-D input available, which we leverage to construct an approach for 3D instance segmentation that effectively fuses together these multi-modal inputs. Our network leverages high-resolution RGB input by associating 2D images with the volumetric grid based on the pose alignment of the 3D reconstruction. For each image, we first extract 2D features for each pixel with a series of 2D convolutions; we then backproject the resulting feature vector to the associated voxel in the 3D grid. This combination of 2D and 3D feature learning allows significantly higher accuracy object detection and instance segmentation than state-of-the-art alternatives. We show results on both synthetic and real-world public benchmarks, achieving an improvement in mAP of over 13 on real-world data.
Zero padding is widely used in convolutional neural networks to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border. As an alternative, we propose a context-aware (CA) padding approach to extend the image. We reformulate the padding problem as an image extrapolation problem and illustrate the effects on the semantic segmentation task. Using context-aware padding, the ResNet-based segmentation model achieves higher mean Intersection-Over-Union than the traditional zero padding on the Cityscapes and the dataset of DeepGlobe satellite imaging challenge. Furthermore, our padding does not bring noticeable overhead during training and testing.
Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا