Do you want to publish a course? Click here

Improving Fake News Detection by Using an Entity-enhanced Framework to Fuse Diverse Multimodal Clues

144   0   0.0 ( 0 )
 Added by Peng Qi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, fake news with text and images have achieved more effective diffusion than text-only fake news, raising a severe issue of multimodal fake news detection. Current studies on this issue have made significant contributions to developing multimodal models, but they are defective in modeling the multimodal content sufficiently. Most of them only preliminarily model the basic semantics of the images as a supplement to the text, which limits their performance on detection. In this paper, we find three valuable text-image correlations in multimodal fake news: entity inconsistency, mutual enhancement, and text complementation. To effectively capture these multimodal clues, we innovatively extract visual entities (such as celebrities and landmarks) to understand the news-related high-level semantics of images, and then model the multimodal entity inconsistency and mutual enhancement with the help of visual entities. Moreover, we extract the embedded text in images as the complementation of the original text. All things considered, we propose a novel entity-enhanced multimodal fusion framework, which simultaneously models three cross-modal correlations to detect diverse multimodal fake news. Extensive experiments demonstrate the superiority of our model compared to the state of the art.



rate research

Read More

93 - Yi Han , Amila Silva , Ling Luo 2021
Recent years have witnessed the significant damage caused by various types of fake news. Although considerable effort has been applied to address this issue and much progress has been made on detecting fake news, most existing approaches mainly rely on the textual content and/or social context, while knowledge-level information---entities extracted from the news content and the relations between them---is much less explored. Within the limited work on knowledge-based fake news detection, an external knowledge graph is often required, which may introduce additional problems: it is quite common for entities and relations, especially with respect to new concepts, to be missing in existing knowledge graphs, and both entity prediction and link prediction are open research questions themselves. Therefore, in this work, we investigate textbf{knowledge-based fake news detection that does not require any external knowledge graph.} Specifically, our contributions include: (1) transforming the problem of detecting fake news into a subgraph classification task---entities and relations are extracted from each news item to form a single knowledge graph, where a news item is represented by a subgraph. Then a graph neural network (GNN) model is trained to classify each subgraph/news item. (2) Further improving the performance of this model through a simple but effective multi-modal technique that combines extracted knowledge, textual content and social context. Experiments on multiple datasets with thousands of labelled news items demonstrate that our knowledge-based algorithm outperforms existing counterpart methods, and its performance can be further boosted by the multi-modal approach.
143 - Bo Ni , Zhichun Guo , Jianing Li 2020
Recently, due to the booming influence of online social networks, detecting fake news is drawing significant attention from both academic communities and general public. In this paper, we consider the existence of confounding variables in the features of fake news and use Propensity Score Matching (PSM) to select generalizable features in order to reduce the effects of the confounding variables. Experimental results show that the generalizability of fake news method is significantly better by using PSM than using raw frequency to select features. We investigate multiple types of fake news methods (classifiers) such as logistic regression, random forests, and support vector machines. We have consistent observations of performance improvement.
Fake news travels at unprecedented speeds, reaches global audiences and puts users and communities at great risk via social media platforms. Deep learning based models show good performance when trained on large amounts of labeled data on events of interest, whereas the performance of models tends to degrade on other events due to domain shift. Therefore, significant challenges are posed for existing detection approaches to detect fake news on emergent events, where large-scale labeled datasets are difficult to obtain. Moreover, adding the knowledge from newly emergent events requires to build a new model from scratch or continue to fine-tune the model, which can be challenging, expensive, and unrealistic for real-world settings. In order to address those challenges, we propose an end-to-end fake news detection framework named MetaFEND, which is able to learn quickly to detect fake news on emergent events with a few verified posts. Specifically, the proposed model integrates meta-learning and neural process methods together to enjoy the benefits of these approaches. In particular, a label embedding module and a hard attention mechanism are proposed to enhance the effectiveness by handling categorical information and trimming irrelevant posts. Extensive experiments are conducted on multimedia datasets collected from Twitter and Weibo. The experimental results show our proposed MetaFEND model can detect fake news on never-seen events effectively and outperform the state-of-the-art methods.
With the rapid evolution of social media, fake news has become a significant social problem, which cannot be addressed in a timely manner using manual investigation. This has motivated numerous studies on automating fake news detection. Most studies explore supervised training models with different modalities (e.g., text, images, and propagation networks) of news records to identify fake news. However, the performance of such techniques generally drops if news records are coming from different domains (e.g., politics, entertainment), especially for domains that are unseen or rarely-seen during training. As motivation, we empirically show that news records from different domains have significantly different word usage and propagation patterns. Furthermore, due to the sheer volume of unlabelled news records, it is challenging to select news records for manual labelling so that the domain-coverage of the labelled dataset is maximized. Hence, this work: (1) proposes a novel framework that jointly preserves domain-specific and cross-domain knowledge in news records to detect fake news from different domains; and (2) introduces an unsupervised technique to select a set of unlabelled informative news records for manual labelling, which can be ultimately used to train a fake news detection model that performs well for many domains while minimizing the labelling cost. Our experiments show that the integration of the proposed fake news model and the selective annotation approach achieves state-of-the-art performance for cross-domain news datasets, while yielding notable improvements for rarely-appearing domains in news datasets.
Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of users. In this paper, we emphasize the detection of fake news by assessing its credibility. By analyzing public fake news data, we show that information on news sources (and authors) can be a strong indicator of credibility. Our findings suggest that an authors history of association with fake news, and the number of authors of a news article, can play a significant role in detecting fake news. Our approach can help improve traditional fake news detection methods, wherein content features are often used to detect fake news.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا