We consider uniform spanning tree (UST) in topological polygons with $2N$ marked points on the boundary with alternating boundary conditions. In [LPW21], the authors derive the scaling limit of the Peano curve in the UST. They are variants of SLE$_8$. In this article, we derive the scaling limit of the loop-erased random walk branch (LERW) in the UST. They are variants of SLE$_2$. The conclusion is a generalization of [HLW20,Theorem 1.6] where the authors derive the scaling limit of the LERW branch of UST when $N=2$. When $N=2$, the limiting law is SLE$_2(-1,-1; -1, -1)$. However, the limiting law is nolonger in the family of SLE$_2(rho)$ process as long as $Nge 3$.