Do you want to publish a course? Click here

Dynamic Network Quantization for Efficient Video Inference

178   0   0.0 ( 0 )
 Added by Ximeng Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep convolutional networks have recently achieved great success in video recognition, yet their practical realization remains a challenge due to the large amount of computational resources required to achieve robust recognition. Motivated by the effectiveness of quantization for boosting efficiency, in this paper, we propose a dynamic network quantization framework, that selects optimal precision for each frame conditioned on the input for efficient video recognition. Specifically, given a video clip, we train a very lightweight network in parallel with the recognition network, to produce a dynamic policy indicating which numerical precision to be used per frame in recognizing videos. We train both networks effectively using standard backpropagation with a loss to achieve both competitive performance and resource efficiency required for video recognition. Extensive experiments on four challenging diverse benchmark datasets demonstrate that our proposed approach provides significant savings in computation and memory usage while outperforming the existing state-of-the-art methods.



rate research

Read More

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
High-quality computer vision models typically address the problem of understanding the general distribution of real-world images. However, most cameras observe only a very small fraction of this distribution. This offers the possibility of achieving more efficient inference by specializing compact, low-cost models to the specific distribution of frames observed by a single camera. In this paper, we employ the technique of model distillation (supervising a low-cost student model using the output of a high-cost teacher) to specialize accurate, low-cost semantic segmentation models to a target video stream. Rather than learn a specialized student model on offline data from the video stream, we train the student in an online fashion on the live video, intermittently running the teacher to provide a target for learning. Online model distillation yields semantic segmentation models that closely approximate their Mask R-CNN teacher with 7 to 17$times$ lower inference runtime cost (11 to 26$times$ in FLOPs), even when the target videos distribution is non-stationary. Our method requires no offline pretraining on the target video stream, achieves higher accuracy and lower cost than solutions based on flow or video object segmentation, and can exhibit better temporal stability than the original teacher. We also provide a new video dataset for evaluating the efficiency of inference over long running video streams.
Recently, several Space-Time Memory based networks have shown that the object cues (e.g. video frames as well as the segmented object masks) from the past frames are useful for segmenting objects in the current frame. However, these methods exploit the information from the memory by global-to-global matching between the current and past frames, which lead to mismatching to similar objects and high computational complexity. To address these problems, we propose a novel local-to-local matching solution for semi-supervised VOS, namely Regional Memory Network (RMNet). In RMNet, the precise regional memory is constructed by memorizing local regions where the target objects appear in the past frames. For the current query frame, the query regions are tracked and predicted based on the optical flow estimated from the previous frame. The proposed local-to-local matching effectively alleviates the ambiguity of similar objects in both memory and query frames, which allows the information to be passed from the regional memory to the query region efficiently and effectively. Experimental results indicate that the proposed RMNet performs favorably against state-of-the-art methods on the DAVIS and YouTube-VOS datasets.
The inherent heavy computation of deep neural networks prevents their widespread applications. A widely used method for accelerating model inference is quantization, by replacing the input operands of a network using fixed-point values. Then the majority of computation costs focus on the integer matrix multiplication accumulation. In fact, high-bit accumulator leads to partially wasted computation and low-bit one typically suffers from numerical overflow. To address this problem, we propose an overflow aware quantization method by designing trainable adaptive fixed-point representation, to optimize the number of bits for each input tensor while prohibiting numeric overflow during the computation. With the proposed method, we are able to fully utilize the computing power to minimize the quantization loss and obtain optimized inference performance. To verify the effectiveness of our method, we conduct image classification, object detection, and semantic segmentation tasks on ImageNet, Pascal VOC, and COCO datasets, respectively. Experimental results demonstrate that the proposed method can achieve comparable performance with state-of-the-art quantization methods while accelerating the inference process by about 2 times.
For semantic segmentation, most existing real-time deep models trained with each frame independently may produce inconsistent results for a video sequence. Advanced methods take into considerations the correlations in the video sequence, e.g., by propagating the results to the neighboring frames using optical flow, or extracting the frame representations with other frames, which may lead to inaccurate results or unbalanced latency. In this work, we process efficient semantic video segmentation in a per-frame fashion during the inference process. Different from previous per-frame models, we explicitly consider the temporal consistency among frames as extra constraints during the training process and embed the temporal consistency into the segmentation network. Therefore, in the inference process, we can process each frame independently with no latency, and improve the temporal consistency with no extra computational cost and post-processing. We employ compact models for real-time execution. To narrow the performance gap between compact models and large models, new knowledge distillation methods are designed. Our results outperform previous keyframe based methods with a better trade-off between the accuracy and the inference speed on popular benchmarks, including the Cityscapes and Camvid. The temporal consistency is also improved compared with corresponding baselines which are trained with each frame independently. Code is available at: https://tinyurl.com/segment-video
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا