The iterated conditional sequential Monte Carlo (i-CSMC) algorithm from Andrieu, Doucet and Holenstein (2010) is an MCMC approach for efficiently sampling from the joint posterior distribution of the $T$ latent states in challenging time-series models, e.g. in non-linear or non-Gaussian state-space models. It is also the main ingredient in particle Gibbs samplers which infer unknown model parameters alongside the latent states. In this work, we first prove that the i-CSMC algorithm suffers from a curse of dimension in the dimension of the states, $D$: it breaks down unless the number of samples (particles), $N$, proposed by the algorithm grows exponentially with $D$. Then, we present a novel local version of the algorithm which proposes particles using Gaussian random-walk moves that are suitably scaled with $D$. We prove that this iterated random-walk conditional sequential Monte Carlo (i-RW-CSMC) algorithm avoids the curse of dimension: for arbitrary $N$, its acceptance rates and expected squared jumping distance converge to non-trivial limits as $D to infty$. If $T = N = 1$, our proposed algorithm reduces to a Metropolis--Hastings or Barkers algorithm with Gaussian random-walk moves and we recover the well known scaling limits for such algorithms.