No Arabic abstract
Deep neural networks (DNNs) are known to be vulnerable to adversarial images, while their robustness in text classification is rarely studied. Several lines of text attack methods have been proposed in the literature, including character-level, word-level, and sentence-level attacks. However, it is still a challenge to minimize the number of word changes necessary to induce misclassification, while simultaneously ensuring lexical correctness, syntactic soundness, and semantic similarity. In this paper, we propose a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) method to examine the vulnerability of deep models. Our method has four major merits. Firstly, we propose to attack text documents not only at the unigram word level but also at the bigram level which better keeps semantics and avoids producing meaningless outputs. Secondly, we propose a hybrid method to replace the input words with options among both their synonyms candidates and sememe candidates, which greatly enriches the potential substitutions compared to only using synonyms. Thirdly, we design an optimization algorithm, i.e., Semantic Preservation Optimization (SPO), to determine the priority of word replacements, aiming to reduce the modification cost. Finally, we further improve the SPO with a semantic Filter (named SPOF) to find the adversarial example with the highest semantic similarity. We evaluate the effectiveness of our BU-SPO and BU-SPOF on IMDB, AGs News, and Yahoo! Answers text datasets by attacking four popular DNNs models. Results show that our methods achieve the highest attack success rates and semantics rates by changing the smallest number of words compared with existing methods.
We propose the first general-purpose gradient-based attack against transformer models. Instead of searching for a single adversarial example, we search for a distribution of adversarial examples parameterized by a continuous-valued matrix, hence enabling gradient-based optimization. We empirically demonstrate that our white-box attack attains state-of-the-art attack performance on a variety of natural language tasks. Furthermore, we show that a powerful black-box transfer attack, enabled by sampling from the adversarial distribution, matches or exceeds existing methods, while only requiring hard-label outputs.
Recent work has demonstrated the vulnerability of modern text classifiers to universal adversarial attacks, which are input-agnostic sequences of words added to text processed by classifiers. Despite being successful, the word sequences produced in such attacks are often ungrammatical and can be easily distinguished from natural text. We develop adversarial attacks that appear closer to natural English phrases and yet confuse classification systems when added to benign inputs. We leverage an adversarially regularized autoencoder (ARAE) to generate triggers and propose a gradient-based search that aims to maximize the downstream classifiers prediction loss. Our attacks effectively reduce model accuracy on classification tasks while being less identifiable than prior models as per automatic detection metrics and human-subject studies. Our aim is to demonstrate that adversarial attacks can be made harder to detect than previously thought and to enable the development of appropriate defenses.
Recently, few certified defense methods have been developed to provably guarantee the robustness of a text classifier to adversarial synonym substitutions. However, all existing certified defense methods assume that the defenders are informed of how the adversaries generate synonyms, which is not a realistic scenario. In this paper, we propose a certifiably robust defense method by randomly masking a certain proportion of the words in an input text, in which the above unrealistic assumption is no longer necessary. The proposed method can defend against not only word substitution-based attacks, but also character-level perturbations. We can certify the classifications of over 50% texts to be robust to any perturbation of 5 words on AGNEWS, and 2 words on SST2 dataset. The experimental results show that our randomized smoothing method significantly outperforms recently proposed defense methods across multiple datasets.
Adversarial attacks against machine learning models have threatened various real-world applications such as spam filtering and sentiment analysis. In this paper, we propose a novel framework, learning to DIScriminate Perturbations (DISP), to identify and adjust malicious perturbations, thereby blocking adversarial attacks for text classification models. To identify adversarial attacks, a perturbation discriminator validates how likely a token in the text is perturbed and provides a set of potential perturbations. For each potential perturbation, an embedding estimator learns to restore the embedding of the original word based on the context and a replacement token is chosen based on approximate kNN search. DISP can block adversarial attacks for any NLP model without modifying the model structure or training procedure. Extensive experiments on two benchmark datasets demonstrate that DISP significantly outperforms baseline methods in blocking adversarial attacks for text classification. In addition, in-depth analysis shows the robustness of DISP across different situations.
In this paper, we present a novel method for measurably adjusting the semantics of text while preserving its sentiment and fluency, a task we call semantic text exchange. This is useful for text data augmentation and the semantic correction of text generated by chatbots and virtual assistants. We introduce a pipeline called SMERTI that combines entity replacement, similarity masking, and text infilling. We measure our pipelines success by its Semantic Text Exchange Score (STES): the ability to preserve the original texts sentiment and fluency while adjusting semantic content. We propose to use masking (replacement) rate threshold as an adjustable parameter to control the amount of semantic change in the text. Our experiments demonstrate that SMERTI can outperform baseline models on Yelp reviews, Amazon reviews, and news headlines.