Do you want to publish a course? Click here

CANet: A Context-Aware Network for Shadow Removal

80   0   0.0 ( 0 )
 Added by Zipei Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel two-stage context-aware network named CANet for shadow removal, in which the contextual information from non-shadow regions is transferred to shadow regions at the embedded feature spaces. At Stage-I, we propose a contextual patch matching (CPM) module to generate a set of potential matching pairs of shadow and non-shadow patches. Combined with the potential contextual relationships between shadow and non-shadow regions, our well-designed contextual feature transfer (CFT) mechanism can transfer contextual information from non-shadow to shadow regions at different scales. With the reconstructed feature maps, we remove shadows at L and A/B channels separately. At Stage-II, we use an encoder-decoder to refine current results and generate the final shadow removal results. We evaluate our proposed CANet on two benchmark datasets and some real-world shadow images with complex scenes. Extensive experimental results strongly demonstrate the efficacy of our proposed CANet and exhibit superior performance to state-of-the-arts.



rate research

Read More

78 - Zhihua Liu , Lei Tong , Long Chen 2020
Automated segmentation of brain glioma plays an active role in diagnosis decision, progression monitoring and surgery planning. Based on deep neural networks, previous studies have shown promising technologies for brain glioma segmentation. However, these approaches lack powerful strategies to incorporate contextual information of tumor cells and their surrounding, which has been proven as a fundamental cue to deal with local ambiguity. In this work, we propose a novel approach named Context-Aware Network (CANet) for brain glioma segmentation. CANet captures high dimensional and discriminative features with contexts from both the convolutional space and feature interaction graphs. We further propose context guided attentive conditional random fields which can selectively aggregate features. We evaluate our method using publicly accessible brain glioma segmentation datasets BRATS2017, BRATS2018 and BRATS2019. The experimental results show that the proposed algorithm has better or competitive performance against several State-of-The-Art approaches under different segmentation metrics on the training and validation sets.
Occlusion removal is an interesting application of image enhancement, for which, existing work suggests manually-annotated or domain-specific occlusion removal. No work tries to address automatic occlusion detection and removal as a context-aware generic problem. In this paper, we present a novel methodology to identify objects that do not relate to the image context as occlusions and remove them, reconstructing the space occupied coherently. The proposed system detects occlusions by considering the relation between foreground and background object classes represented as vector embeddings, and removes them through inpainting. We test our system on COCO-Stuff dataset and conduct a user study to establish a baseline in context-aware automatic occlusion removal.
Shadow removal is still a challenging task due to its inherent background-dependent and spatial-variant properties, leading to unknown and diverse shadow patterns. Even powerful state-of-the-art deep neural networks could hardly recover traceless shadow-removed background. This paper proposes a new solution for this task by formulating it as an exposure fusion problem to address the challenges. Intuitively, we can first estimate multiple over-exposure images w.r.t. the input image to let the shadow regions in these images have the same color with shadow-free areas in the input image. Then, we fuse the original input with the over-exposure images to generate the final shadow-free counterpart. Nevertheless, the spatial-variant property of the shadow requires the fusion to be sufficiently `smart, that is, it should automatically select proper over-exposure pixels from different images to make the final output natural. To address this challenge, we propose the shadow-aware FusionNet that takes the shadow image as input to generate fusion weight maps across all the over-exposure images. Moreover, we propose the boundary-aware RefineNet to eliminate the remaining shadow trace further. We conduct extensive experiments on the ISTD, ISTD+, and SRD datasets to validate our methods effectiveness and show better performance in shadow regions and comparable performance in non-shadow regions over the state-of-the-art methods. We release the model and code in https://github.com/tsingqguo/exposure-fusion-shadow-removal.
108 - Lu Qi , Shu Liu , Jianping Shi 2018
Duplicate removal is a critical step to accomplish a reasonable amount of predictions in prevalent proposal-based object detection frameworks. Albeit simple and effective, most previous algorithms utilize a greedy process without making sufficient use of properties of input data. In this work, we design a new two-stage framework to effectively select the appropriate proposal candidate for each object. The first stage suppresses most of easy negative object proposals, while the second stage selects true positives in the reduced proposal set. These two stages share the same network structure, ie, an encoder and a decoder formed as recurrent neural networks (RNN) with global attention and context gate. The encoder scans proposal candidates in a sequential manner to capture the global context information, which is then fed to the decoder to extract optimal proposals. In our extensive experiments, the proposed method outperforms other alternatives by a large margin.
252 - Yujia Sun , Geng Chen , Tao Zhou 2021
Camouflaged object detection (COD) is a challenging task due to the low boundary contrast between the object and its surroundings. In addition, the appearance of camouflaged objects varies significantly, e.g., object size and shape, aggravating the difficulties of accurate COD. In this paper, we propose a novel Context-aware Cross-level Fusion Network (C2F-Net) to address the challenging COD task. Specifically, we propose an Attention-induced Cross-level Fusion Module (ACFM) to integrate the multi-level features with informative attention coefficients. The fused features are then fed to the proposed Dual-branch Global Context Module (DGCM), which yields multi-scale feature representations for exploiting rich global context information. In C2F-Net, the two modules are conducted on high-level features using a cascaded manner. Extensive experiments on three widely used benchmark datasets demonstrate that our C2F-Net is an effective COD model and outperforms state-of-the-art models remarkably. Our code is publicly available at: https://github.com/thograce/C2FNet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا