Do you want to publish a course? Click here

$SO(10)$ models with $A_4$ modular symmetry

107   0   0.0 ( 0 )
 Added by Jun-Nan Lu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We combine $SO(10)$ Grand Unified Theories (GUTs) with $A_4$ modular symmetry and present a comprehensive analysis of the resulting quark and lepton mass matrices for all the simplest cases. We focus on the case where the three fermion families in the 16 dimensional spinor representation form a triplet of $Gamma_3simeq A_4$, with a Higgs sector comprising a single Higgs multiplet $H$ in the ${mathbf{10}}$ fundamental representation and one Higgs field $overline{Delta}$ in the ${mathbf{overline{126}}}$ for the minimal models, plus and one Higgs field $Sigma$ in the ${mathbf{120}}$ for the non-minimal models, all with specified modular weights. The neutrino masses are generated by the type-I and/or type II seesaw mechanisms and results are presented for each model following an intensive numerical analysis where we have optimized the free parameters of the models in order to match the experimental data. For the phenomenologically successful models, we present the best fit results in numerical tabular form as well as showing the most interesting graphical correlations between parameters, including leptonic CP phases and neutrinoless double beta decay, which have yet to be measured, leading to definite predictions for each of the models.



rate research

Read More

We discuss type-II seesaw models adopting modular $A_4$ symmetry in supersymmetric framework. In our approach, the models are classified by the assignment of $A_4$ representations and modular weights for leptons and triplet Higgs fields. Then neutrino mass matrix is characterized by modulus $tau$ and two free parameters. Carrying out numerical analysis, we find allowed parameter sets which can fit the neutrino oscillation data. For the allowed parameter sets, we obtain the predictions in neutrino sector such as CP violating phases and the lightest neutrino mass. Finally we also show the predictions for the branching ratios of doubly charged scalar boson focusing on the case where the doubly charged scalar boson dominantly decays into charged leptons.
We discuss an inverse seesaw model based on right-handed fermion specific $U(1)$ gauge symmetry and $A_4$-modular symmetry. These symmetries forbid unnecessary terms and restrict structures of Yukawa interactions which are relevant to inverse seesaw mechanism. Then we can obtain some predictions in neutrino sector such as Dirac-CP phase and sum of neutrino mass, which are shown by our numerical analysis. Besides the relation among masses of heavy pseudo-Dirac neutrino can be obtained since it is also restricted by the modular symmetry. We also discuss implications to lepton flavor violation and collider physics in our model.
We extend the nonsupersymmetric SO(10) grand unification theories by adding a horizontal symmetry, which connects the three generations of fermions. Without committing to any specific symmetry group, we investigate the 1-loop renormalization group evolutions of the gauge couplings with one and two intermediate breaking scales. We find that depending on the SO(10) breaking chains, gauge coupling unification is compatible with only a handful of choices of representations of the Higgs bosons under the horizontal symmetry.
We study a flavor model with $A_4$ symmetry which originates from $S_4$ modular group. In $S_4$ symmetry, $Z_2$ subgroup can be anomalous, and then $S_4$ can be violated to $A_4$. Starting with a $S_4$ symmetric Lagrangian at the tree level, the Lagrangian at the quantum level has only $A_4$ symmetry when $Z_2$ in $S_4$ is anomalous. We obtain modular forms of two singlets and a triplet representations of $A_4$ by decomposing $S_4$ modular forms into $A_4$ representations. We propose a new $A_4$ flavor model of leptons by using those $A_4$ modular forms. We succeed in constructing a viable neutrino mass matrix through the Weinberg operator for both normal hierarchy (NH) and inverted hierarchy (IH) of neutrino masses. Our predictions of the CP violating Dirac phase $delta_{CP}$ and the mixing $sin^2theta_{23}$ depend on the sum of neutrino masses for NH.
We construct a model to explain the muon anomalous magnetic moment, without considering any lepton flavor violations, in the modular $A_4$ symmetry. We have investigated a predictive radiative seesaw model including dark matter candidate at favorable fixed point of $tau=omega$ obtained by recent analysis of the stabilized moduli values from the possible configurations of the flux compactifications. In the result, we show our predictions on the Dirac CP and Majorana phases, the neutrino masses, the mass range of dark matter as well as the muon anomalous magnetic moment through the $chi^2$ analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا