Do you want to publish a course? Click here

Mittag--Leffler stability of numerical solutions to time fractional ODEs

191   0   0.0 ( 0 )
 Added by Dongling Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very different from the exponential decay of solutions to classical ODEs, solutions of F-ODEs decay only polynomially, leading to the so-called Mittag-Leffler stability, which was already extended to semi-linear F-ODEs with small perturbations. This work is mainly devoted to the qualitative analysis of the long-time behavior of numerical solutions. By applying the singularity analysis of generating functions developed by Flajolet and Odlyzko (SIAM J. Disc. Math. 3 (1990), 216-240), we are able to prove that both $mathcal{L}$1 scheme and strong $A$-stable fractional linear multistep methods (F-LMMs) can preserve the numerical Mittag-Leffler stability for linear homogeneous F-ODEs exactly as in the continuous case. Through an improved estimate of the discrete fractional resolvent operator, we show that strong $A$-stable F-LMMs are also Mittag-Leffler stable for semi-linear F-ODEs under small perturbations. For the numerical schemes based on $alpha$-difference approximation to Caputo derivative, we establish the Mittag-Leffler stability for semi-linear problems by making use of properties of the Poisson transformation and the decay rate of the continuous fractional resolvent operator. Numerical experiments are presented for several typical time fractional evolutional equations, including time fractional sub-diffusion equations, fractional linear system and semi-linear F-ODEs. All the numerical results exhibit the typical long-time polynomial decay rate, which is fully consistent with our theoretical predictions.



rate research

Read More

This paper deals with the solution of unified fractional reaction-diffusion systems. The results are obtained in compact and elegant forms in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. On account of the most general character of the derived results, numerous results on fractional reaction, fractional diffusion, and fractional reaction-diffusion problems scattered in the literature, including the recently derived results by the authors for reaction-diffusion models, follow as special cases.
Atangana and Baleanu proposed a new fractional derivative with non-local and no-singular Mittag-Leffler kernel to solve some problems proposed by researchers in the field of fractional calculus. This new derivative is better to describe essential aspects of non-local dynamical systems. We present some results regarding Lyapunov stability theory, particularly the Lyapunov Direct Method for fractional-order systems modeled with Atangana-Baleanu derivatives and some significant inequalities that help to develop the theoretical analysis. As applications in control theory, some algorithms of state estimation are proposed for linear and nonlinear fractional-order systems.
This paper addresses the question whether there are numerical schemes for constant-coefficient advection problems that can yield convergent solutions for an infinite time horizon. The motivation is that such methods may serve as building blocks for long-time accurate solutions in more complex advection-dominated problems. After establishing a new notion of convergence in an infinite time limit of numerical methods, we first show that linear methods cannot meet this convergence criterion. Then we present a new numerical methodology, based on a nonlinear jet scheme framework. We show that these methods do satisfy the new convergence criterion, thus establishing that numerical methods exist that converge on an infinite time horizon, and demonstrate the long-time accuracy gains incurred by this property.
The main objective of this article is to present $ u$-fractional derivative $mu$-differentiable functions by considering 4-parameters extended Mittag-Leffler function (MLF). We investigate that the new $ u$-fractional derivative satisfies various properties of order calculus such as chain rule, product rule, Rolles and mean-value theorems for $mu$-differentiable function and its extension. Moreover, we define the generalized form of inverse property and the fundamental theorem of calculus and the mean-value theorem for integrals. Also, we establish a relationship with fractional integral through truncated $ u$-fractional integral.
83 - Daxin Nie , Weihua Deng 2021
In this paper, we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussion noise with Hurst index $Hin(frac{1}{2},1)$. A sharp regularity estimate of the mild solution and the numerical scheme constructed by finite element method for integral fractional Laplacian and backward Euler convolution quadrature for Riemann-Liouville time fractional derivative are proposed. With the help of inverse Laplace transform and fractional Ritz projection, we obtain the accurate error estimates in time and space. Finally, our theoretical results are accompanied by numerical experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا