Do you want to publish a course? Click here

Developments in Mathematical Algorithms and Computational Tools for Proton CT and Particle Therapy Treatment Planning

103   0   0.0 ( 0 )
 Added by Yair Censor
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We summarize recent results and ongoing activities in mathematical algorithms and computer science methods related to proton computed tomography (pCT) and intensity-modulated particle therapy (IMPT) treatment planning. Proton therapy necessitates a high level of delivery accuracy to exploit the selective targeting imparted by the Bragg peak. For this purpose, pCT utilizes the proton beam itself to create images. The technique works by sending a low-intensity beam of protons through the patient and measuring the position, direction, and energy loss of each exiting proton. The pCT technique allows reconstruction of the volumetric distribution of the relative stopping power (RSP) of the patient tissues for use in treatment planning and pre-treatment range verification. We have investigated new ways to make the reconstruction both efficient and accurate. Better accuracy of RSP also enables more robust inverse approaches to IMPT. For IMPT, we developed a framework for performing intensity-modulation of the proton pencil beams. We expect that these developments will lead to additional project work in the years to come, which requires a regular exchange between experts in the fields of mathematics, computer science, and medical physics. We have initiated such an exchange by organizing annual workshops on pCT and IMPT algorithm and technology developments. This report is, admittedly, tilted toward our interdisciplinary work and methods. We offer a comprehensive overview of results, problems, and challenges in pCT and IMPT with the aim of making other scientists wanting to tackle such issues and to strengthen their interdisciplinary collaboration by bringing together cutting-edge know-how from medicine, computer science, physics, and mathematics to bear on medical physics problems at hand.



rate research

Read More

136 - Charles Huang , Yong Yang , 2021
Noncoplanar radiation therapy treatment planning has the potential to improve dosimetric quality as compared to traditional coplanar techniques. Likewise, automated treatment planning algorithms can reduce a planners active treatment planning time and remove inter-planner variability. To address the limitations of traditional treatment planning, we have been developing a suite of algorithms called station parameter optimized radiation therapy (SPORT). Within the SPORT suite of algorithms, we propose a method called NC-POPS to produce noncoplanar (NC) plans using the fully automated Pareto Optimal Projection Search (POPS) algorithm. Our NC-POPS algorithm extends the original POPS algorithm to the noncoplanar setting with potential applications to both IMRT and VMAT. The proposed algorithm consists of two main parts: 1) noncoplanar beam angle optimization (BAO) and 2) fully automated inverse planning using the POPS algorithm. We evaluate the performance of NC-POPS by comparing between various noncoplanar and coplanar configurations. To evaluate plan quality, we compute the homogeneity index (HI), conformity index (CI), and dose-volume histogram (DVH) statistics for various organs-at-risk (OARs). As compared to the evaluated coplanar baseline methods, the proposed NC-POPS method achieves significantly better OAR sparing, comparable or better dose conformity, and similar dose homogeneity. Our proposed NC-POPS algorithm provides a modular approach for fully automated treatment planning of noncoplanar IMRT cases with the potential to substantially improve treatment planning workflow and plan quality.
Proton beam therapy can potentially offer improved treatment for cancers of the head and neck and in paediatric patients. There has been a sharp uptake of proton beam therapy in recent years as improved delivery techniques and patient benefits are observed. However, treatments are currently planned using conventional x-ray CT images due to the absence of devices able to perform high quality proton computed tomography (pCT) under realistic clinical conditions. A new plastic-scintillator-based range telescope concept, named ASTRA, is proposed here as the energy tagging detector of a pCT system. Simulations conducted using Geant4 yield an expected energy resolution of 0.7% and have demonstrated the ability of ASTRA to track multiple protons simultaneously. If calorimetric information is used the energy resolution could be further improved to about 0.5%. Assuming clinical beam parameters the system is expected to be able to efficiently reconstruct at least, 10$^8$ protons/s. The performance of ASTRA has been tested by imaging phantoms to evaluate the image contrast and relative stopping power reconstruction.
197 - Anqi Fu , Lei Xing , Stephen Boyd 2021
We present an optimization-based approach to radiation treatment planning over time. Our approach formulates treatment planning as an optimal control problem with nonlinear patient health dynamics derived from the standard linear-quadratic cell survival model. As the formulation is nonconvex, we propose a method for obtaining an approximate solution by solving a sequence of convex optimization problems. This method is fast, efficient, and robust to model error, adapting readily to changes in the patients health between treatment sessions. Moreover, we show that it can be combined with the operator splitting method ADMM to produce an algorithm that is highly scalable and can handle large clinical cases. We introduce an open-source Python implementation of our algorithm, AdaRad, and demonstrate its performance on several examples.
Purpose: Dual-energy CT (DECT) has been used to derive relative stopping power (RSP) map by obtaining the energy dependence of photon interactions. The DECT-derived RSP maps could potentially be compromised by image noise levels and the severity of artifacts when using physics-based mapping techniques, which would affect subsequent clinical applications. This work presents a noise-robust learning-based method to predict RSP maps from DECT for proton radiation therapy. Methods: The proposed method uses a residual attention cycle-consistent generative adversarial (CycleGAN) network. CycleGAN were used to let the DECT-to-RSP mapping be close to a one-to-one mapping by introducing an inverse RSP-to-DECT mapping. We retrospectively investigated 20 head-and-neck cancer patients with DECT scans in proton radiation therapy simulation. Ground truth RSP values were assigned by calculation based on chemical compositions, and acted as learning targets in the training process for DECT datasets, and were evaluated against results from the proposed method using a leave-one-out cross-validation strategy. Results: The predicted RSP maps showed an average normalized mean square error (NMSE) of 2.83% across the whole body volume, and average mean error (ME) less than 3% in all volumes of interest (VOIs). With additional simulated noise added in DECT datasets, the proposed method still maintained a comparable performance, while the physics-based stoichiometric method suffered degraded inaccuracy from increased noise level. The average differences in DVH metrics for clinical target volumes (CTVs) were less than 0.2 Gy for D95% and Dmax with no statistical significance. Conclusion: These results strongly indicate the high accuracy of RSP maps predicted by our machine-learning-based method and show its potential feasibility for proton treatment planning and dose calculation.
PET imaging is a non-invasive technique for particle range verification in proton therapy. It is based on measuring the beta+ annihilations caused by nuclear interactions of the protons in the patient. In this work we present measurements for proton range verification in phantoms, performed at the CNAO particle therapy treatment center in Pavia, Italy, with our 10 x 10 cm^2 planar PET prototype DoPET. PMMA phantoms were irradiated with mono-energetic proton beams and clinical treatment plans, and PET data were acquired during and shortly after proton irradiation. We created 1-D profiles of the beta+ activity along the proton beam-axis, and evaluated the difference between the proximal rise and the distal fall-off position of the activity distribution. A good agreement with FLUKA Monte Carlo predictions was obtained. We also assessed the system response when the PMMA phantom contained an air cavity. The system was able to detect these cavities quickly after irradiation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا