Do you want to publish a course? Click here

Virial ansatze for the Schrodinger Equation with a symmetric strictly convex potential. Part II

135   0   0.0 ( 0 )
 Added by Silvana Pilar Flego
 Publication date 2021
  fields Physics
and research's language is English
 Authors S. P. Flego




Ask ChatGPT about the research

Recently was introduced in the literature a procedure to obtain ansatze, free of parameters, for the eigenfunctions of the time-independent Schrodinger equation with symmetric convex potential. In the present work, we test this technique in regard to $x^{2kappa}$-type potentials. We study the behavior of the ansatze regarding the degree of the potential and to the intervening coupling constant. Finally, we discuss how the results could be used to establish the upper bounds of the relative errors in situations where intervening polynomial potentials.



rate research

Read More

119 - S. P. Flego 2020
Considering symmetric strictly convex potentials, a local relationship is inferred from the virial theorem, based on which a real log-concave function can be constructed. Using this as a weight function and in such a way that the virial theorem can still be verified, parameter-free ansatze for the eigenfunctions of the associated Schrodinger equation are built. To illustrate the process, the technique is successfully tested against the harmonic oscillator, in which it leads to the exact eigenfunctions, and against the quartic anharmonic oscillator, which is considered the paradigmatic testing ground for new approaches to the Schrodinger equation.
In this paper, we search the dependence of some statistical quantities such as the free energy, the mean energy, the entropy, and the specific heat for the Schrodinger equation on the temperature, particularly the case of a non-central potential. The basic point is to find the partition function which is obtained by a method based on the Euler-Maclaurin formula. At first, we present the analytical results by supporting with some plots for the thermal functions for one- and three-dimensional cases to find out the effect of the angular momentum. We also search then the effect of the angle-dependent part of the non-central potential. We discuss the results briefly for a phase transition for the system. We also present our results for three-dimesional harmonic oscillator.
A general form of the effective mass Schrodinger equation is solved exactly for Hulthen potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function.
125 - Sheng Wang , Chengbin Xu 2021
In this paper, we show the scattering of the solution for the focusing inhomogenous nonlinear Schrodinger equation with a potential begin{align*} ipartial_t u+Delta u- Vu=-|x|^{-b}|u|^{p-1}u end{align*} in the energy space $H^1(mathbb R^3)$. We prove a scattering criterion, and then we use it together with Morawetz estimate to show the scattering theory.
The scattering solutions of the one-dimensional Schrodinger equation for the Woods-Saxon potential are obtained within the position-dependent mass formalism. The wave functions, transmission and reflection coefficients are calculated in terms of Heuns function. These results are also studied for the constant mass case in detail.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا