Do you want to publish a course? Click here

Erosion by dripping drops: The stress distribution and surface shock wave of drop impact

83   0   0.0 ( 0 )
 Added by Xiang Cheng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Drop impact causes severe surface erosion, dictating many important natural, environmental and engineering processes and calling for tremendous prevention and preservation efforts. Nevertheless, despite extensive studies on various kinematic features of impacting drops over the last two decades, the dynamic process that leads to the drop-impact erosion is still far from clear. Here, we develop a method of high-speed stress microscopy, which measures the key dynamic properties of drop impact responsible for erosion, i.e., the shear stress and pressure distributions of impacting drops, with unprecedented spatiotemporal resolutions. Our experiments reveal the fast propagation of self-similar noncentral stress maxima underneath impacting drops and quantify the shear force on impacted substrates. Moreover, we examine the deformation of elastic substrates under impact and uncover impact-induced surface shock waves. Our study opens the door for quantitative measurements of the impact stress of liquid drops and sheds light on the mysterious origin of drop-impact erosion.



rate research

Read More

Liquid drops and vibrations are ubiquitous in both everyday life and technology, and their combination can often result in fascinating physical phenomena opening up intriguing opportunities for practical applications in biology, medicine, chemistry and photonics. Here we study, theoretically and experimentally, the response of pancake-shaped liquid drops supported by a solid plate that vertically vibrates at a single, low acoustic range frequency. When the vibration amplitudes are small, the primary response of the drop is harmonic at the frequency of the vibration. However, as the amplitude increases, the half-frequency subharmonic Faraday waves are excited parametrically on the drop surface. We develop a simple hydrodynamic model of a one-dimensional liquid drop to analytically determine the amplitudes of the harmonic and the first superharmonic components of the linear response of the drop. In the nonlinear regime, our numerical analysis reveals an intriguing cascade of instabilities leading to the onset of subharmonic Faraday waves, their modulation instability and chaotic regimes with broadband power spectra. We show that the nonlinear response is highly sensitive to the ratio of the drop size and Faraday wavelength. The primary bifurcation of the harmonic waves is shown to be dominated by a period-doubling bifurcation, when the drop height is comparable with the width of the viscous boundary layer. Experimental results conducted using low-viscosity ethanol and high-viscocity canola oil drops vibrated at 70 Hz are in qualitative agreement with the predictions of our modelling.
When a liquid drop impacts on a heated substrate, it can remain deposited, or violently boil in contact, or lift off with or without ever touching the surface. The latter is known as the Leidenfrost effect. The duration and area of the liquid--substrate contact is highly relevant for the heat transfer, as well as other effects such as corrosion. However, most experimental studies rely on side view imaging to determine contact times, and those are often mixed with the time until the drop lifts off from the substrate. Here, we develop and validate a reliable method of contact time determination using high-speed X-ray and Total Internal Reflection measurements. We exemplarily compare contact and lift-off times on flat silicon and sapphire substrates. We show that drops can rebound even without formation of a complete vapor layer, with a wide range of lift-off times. On sapphire, we find a local minimum of lift-off times much shorter than by capillary rebound in the comparatively low-temperature regime of transition boiling / thermal atomization. We elucidate the underlying mechanism related to spontaneous rupture of the lamella and receding of the contact area.
A charged droplet can be electrodynamically levitated in the air using a quadrupole trap by typically applying a sinusoidal electric field. When a charged drop is levitated it exhibits surface oscillations simultaneously building charge density due to continuous evaporation and subsequently undergoes breakup due to Rayleigh instability. In this work, we examined large-amplitude surface oscillations of a sub-Rayleigh charged drop and its subsequent breakup, levitated by various applied signals such as sine, square and ramp waveform at various imposed frequencies, using high-speed imaging (recorded at 100-130 thousand Frames Per Second (fps)). It is observed that the drop surface oscillates in sphere-prolate-sphere-oblate (SPSO) mode and seldom in the sphere-prolate-sphere (SPS) mode depending on the intricate interplay of various forces due to charge(q), the intensity of applied field ($Lambda$) and shift of the droplet from the geometric center of the trap ($z_{shift}$). The Fast Fourier Transformation (FFT) analysis shows that the droplet oscillates with the forced frequency irrespective of the type of the applied waveform. While in the sinusoidal case, the nonlinearities are significant, in the square and ramp potentials, there is an admittance of all the harmonic frequencies of the applied potential. Interestingly, the breakup characteristics of a critically charged droplet is found to be unaffected by the type of the applied waveform. The experimental observations are validated with an analytical theory as well as with the Boundary Integral (BI) simulations in the potential flow limit and the results are found to be in a reasonable agreement.
The short-term transient falling dynamics of a dripping water drop in quiescent air has been investigated through both simulation and experiment. The focus is on the short term behavior and the time range considered covers about eight dominant second-mode oscillations of the drop after it is formed. Due to the small fluid inertia the growth of the drop is quasi-static and is well captured by the static pendant drop theory. Nevertheless, the pinching dynamics and the resulting post-formation state of the drop trigger a nonlinear oscillation when the drop falls. The initial shape of the drop when it is just formed is decomposed into spherical harmonic modes. The pinching dynamics such as interface overturning introduces small-scale variation on the drop contour, which in turn contributes to the finite amplitudes of the higher-order modes. Furthermore, the initial kinetic energy when the droplet is just formed is as important as the initial surface energy contained in the drop shape, and is found to amplify the initial oscillation amplitude and to induce a phase shift in the oscillation of all the modes. By incorporating both the initial surface and kinetic energy, the linear model for a free drop oscillation yields very good predictions for the second and third modes. The mode amplitude spectra show both the primary frequencies that are consistent with the Lambs theory and the secondary frequencies arising from different modes due to nonlinear inter-mode coupling. The complex transient flow inside and outside the drop is induced by the interaction between the falling motion and the nonlinear oscillation. The streamlines indicate that the internal flow is substantially different from the Hill vortex for a falling drop without oscillation. The temporal evolutions of both the internal flow and the wake morphology follow the dominant second oscillation mode.
Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the migration velocity of the droplets. Remarkably, we find that while on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs which prevents the two drops from coming into direct contact. This versatile, new interaction is the liquid-on-solid analogue of the Cheerios effect. The effect will strongly influence the condensation and coarsening of drop soft polymer films, and has potential implications for colloidal assembly and in mechanobiology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا