Do you want to publish a course? Click here

Network-wide link travel time and station waiting time estimation using automatic fare collection data: A computational graph approach

406   0   0.0 ( 0 )
 Added by Jinlei Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Urban rail transit (URT) system plays a dominating role in many megacities like Beijing and Hong Kong. Due to its important role and complex nature, it is always in great need for public agencies to better understand the performance of the URT system. This paper focuses on an essential and hard problem to estimate the network-wide link travel time and station waiting time using the automatic fare collection (AFC) data in the URT system, which is beneficial to better understand the system-wide real-time operation state. The emerging data-driven techniques, such as computational graph (CG) models in the machine learning field, provide a new solution for solving this problem. In this study, we first formulate a data-driven estimation optimization framework to estimate the link travel time and station waiting time. Then, we cast the estimation optimization model into a CG framework to solve the optimization problem and obtain the estimation results. The methodology is verified on a synthetic URT network and applied to a real-world URT network using the synthetic and real-world AFC data, respectively. Results show the robustness and effectiveness of the CG-based framework. To the best of our knowledge, this is the first time that the CG is applied to the URT. This study can provide critical insights to better understand the operational state in URT.



rate research

Read More

Estimating the travel time of any route is of great importance for trip planners, traffic operators, online taxi dispatching and ride-sharing platforms, and navigation provider systems. With the advance of technology, many traveling cars, including online taxi dispatch systems vehicles are equipped with Global Positioning System (GPS) devices that can report the location of the vehicle every few seconds. This paper uses GPS data and the Matrix Factorization techniques to estimate the travel times on all road segments and time intervals simultaneously. We aggregate GPS data into a matrix, where each cell of the original matrix contains the average vehicle speed for a segment and a specific time interval. One of the problems with this matrix is its high sparsity. We use Alternating Least Squares (ALS) method along with a regularization term to factorize the matrix. Since this approach can solve the sparsity problem that arises from the absence of cars in many road segments in a specific time interval, matrix factorization is suitable for estimating the travel time. Our comprehensive evaluation results using real data provided by one of the largest online taxi dispatching systems in Iran, shows the strength of our proposed method.
We address two shortcomings in online travel time estimation methods for congested urban traffic. The first shortcoming is related to the determination of the number of mixture modes, which can change dynamically, within day and from day to day. The second shortcoming is the wide-spread use of Gaussian probability densities as mixture components. Gaussian densities fail to capture the positive skew in travel time distributions and, consequently, large numbers of mixture components are needed for reasonable fitting accuracy when applied as mixture components. They also assign positive probabilities to negative travel times. To address these issues, this paper derives a mixture distribution with Gamma component densities, which are asymmetric and supported on the positive numbers. We use sparse estimation techniques to ensure parsimonious models and propose a generalization of Gamma mixture densities using Mittag-Leffler functions, which provides enhanced fitting flexibility and improved parsimony. In order to accommodate within-day variability and allow for online implementation of the proposed methodology (i.e., fast computations on streaming travel time data), we introduce a recursive algorithm which efficiently updates the fitted distribution whenever new data become available. Experimental results using real-world travel time data illustrate the efficacy of the proposed methods.
Taxi arrival time prediction is an essential part of building intelligent transportation systems. Traditional arrival time estimation methods mainly rely on traffic map feature extraction, which can not model complex situations and nonlinear spatial and temporal relationships. Therefore, we propose a Multi-View Spatial-Temporal Model (MVSTM) to capture the dependence of spatial-temporal and trajectory. Specifically, we use graph2vec to model the spatial view, dual-channel temporal module to model the trajectory view, and structural embedding to model the traffic semantics. Experiments on large-scale taxi trajectory data show that our approach is more effective than the novel method. The source code can be obtained from https://github.com/775269512/SIGSPATIAL-2021-GISCUP-4th-Solution.
In high frequency financial data not only returns but also waiting times between trades are random variables. In this work, we analyze the spectra of the waiting-time processes for tick-by-tick trades. The numerical problem, strictly related with the real inversion of Laplace transforms, is analyzed by using Tikhonovs regularization method. We also analyze these spectra by a rough method using a comb of Diracs delta functions.
Random walks on bipartite networks have been used extensively to design personalized recommendation methods. While aging has been identified as a key component in the growth of information networks, most research has focused on the networks structural properties and neglected the often available time information. Time has been largely ignored both by the investigated recommendation methods as well as by the methodology used to evaluate them. We show that this time-unaware approach overestimates the methods recommendation performance. Motivated by microscopic rules of network growth, we propose a time-aware modification of an existing recommendation method and show that by combining the temporal and structural aspects, it outperforms the existing methods. The performance improvements are particularly striking in systems with fast aging.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا