Fractal-like photonic lattices and localized states arising from singular and nonsingular flatbands


Abstract in English

We realize fractal-like photonic lattices using cw-laser-writing technique, thereby observe distinct compact localized states (CLSs) associated with different flatbands in the same lattice setting. Such triangle-shaped lattices, akin to the first generation Sierpinski lattices, possess a band structure where singular non-degenerate and nonsingular degenerate flatbands coexist. By proper phase modulation of an input excitation beam, we demonstrate experimentally not only the simplest CLSs but also their superimposition into other complex mode structures. Furthermore, we show by numerical simulation a dynamical oscillation of the flatband states due to beating of the CLSs that have different eigenenergies. These results may provide inspiration for exploring fundamental phenomena arising from fractal structure, flatband singularity, and real-space topology.

Download