Do you want to publish a course? Click here

A 20-Second Cadence View of Solar-Type Stars and Their Planets with TESS: Asteroseismology of Solar Analogs and a Re-characterization of pi Men c

156   0   0.0 ( 0 )
 Added by Daniel Huber
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the first 20-second cadence light curves obtained by the TESS space telescope during its extended mission. We find a precision improvement of 20-second data compared to 2-minute data for bright stars when binned to the same cadence (~10-25% better for T<~8 mag, reaching equal precision at T~13 mag), consistent with pre-flight expectations based on differences in cosmic ray mitigation algorithms. We present two results enabled by this improvement. First, we use 20-second data to detect oscillations in three solar analogs (gamma Pav, zeta Tuc and pi Men) and use asteroseismology to measure their radii, masses, densities and ages to ~1%, ~3%, ~1% and ~20% respectively, including systematic errors. Combining our asteroseismic ages with chromospheric activity measurements we find evidence that the spread in the activity-age relation is linked to stellar mass and thus convection-zone depth. Second, we combine 20-second data and published radial velocities to re-characterize pi Men c, which is now the closest transiting exoplanet for which detailed asteroseismology of the host star is possible. We show that pi Men c is located at the upper edge of the planet radius valley for its orbital period, confirming that it has likely retained a volatile atmosphere and that the asteroseismic radius valley remains devoid of planets. Our analysis favors a low eccentricity for pi Men c (<0.1 at 68% confidence), suggesting efficient tidal dissipation (Q/k <~ 2400) if it formed via high-eccentricity migration. Combined, these early results demonstrate the strong potential of TESS 20-second cadence data for stellar astrophysics and exoplanet science.



rate research

Read More

The evolved solar-type stars 16 Cyg A & B have long been studied as solar analogs, yielding a glimpse into the future of our own Sun. The orbital period of the binary system is too long to provide meaningful dynamical constraints on the stellar properties, but asteroseismology can help because the stars are among the brightest in the Kepler field. We present an analysis of three months of nearly uninterrupted photometry of 16 Cyg A & B from the Kepler space telescope. We extract a total of 46 and 41 oscillation frequencies for the two components respectively, including a clear detection of octupole (l=3) modes in both stars. We derive the properties of each star independently using the Asteroseismic Modeling Portal, fitting the individual oscillation frequencies and other observational constraints simultaneously. We evaluate the systematic uncertainties from an ensemble of results generated by a variety of stellar evolution codes and fitting methods. The optimal models derived by fitting each component individually yield a common age (t=6.8+/-0.4 Gyr) and initial composition (Z_i=0.024+/-0.002, Y_i=0.25+/-0.01) within the uncertainties, as expected for the components of a binary system, bolstering our confidence in the reliability of asteroseismic techniques. The longer data sets that will ultimately become available will allow future studies of differential rotation, convection zone depths, and long-term changes due to stellar activity cycles.
97 - R. A. Garcia , J. Ballot 2019
Until the last few decades, investigations of stellar interiors had been restricted to theoretical studies only constrained by observations of their global properties and external characteristics. However, in the last thirty years the field has been revolutionized by the ability to perform seismic investigations of stellar interiors. This revolution begun with the Sun, where helioseismology has been yielding information competing with what can be inferred about the Earths interior from geoseismology. The last two decades have witnessed the advent of asteroseismology of solar-like stars, thanks to a dramatic development of new observing facilities providing the first reliable results on the interiors of distant stars. The coming years will see a huge development in this field. In this review we focus on solar-type stars, i.e., cool main-sequence stars where oscillations are stochastically excited by surface convection. After a short introduction and a historical overview of the discipline, we review the observational techniques generally used, and we describe the theory behind stellar oscillations in cool main-sequence stars. We continue with a complete description of the normal mode analyses through which it is possible to extract the physical information about the structure and dynamics of the stars. We then summarize the lessons that we have learned and discuss unsolved issues and questions that are still unanswered.
We present the first detections by the NASA K2 Mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign,1 (C1). We understand the asteroseismic detection thresholds for C1-like levels of photometric performance, and we can detect oscillations in subgiants having dominant oscillation frequencies around $1000,rm mu Hz$. Changes to the operation of the fine-guidance sensors are expected to give significant improvements in the high-frequency performance from C3 onwards. A reduction in the excess high-frequency noise by a factor of two-and-a-half in amplitude would bring main-sequence stars with dominant oscillation frequencies as high as ${simeq 2500},rm mu Hz$ into play as potential asteroseismic targets for K2.
We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed modes in one of the three stars.
Observations from the Kepler satellite were recently published for three bright G-type stars, which were monitored during the first 33.5d of science operations. One of these stars, KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that the star has evolved significantly. We have derived initial estimates of the properties of KIC 11026764 from the oscillation frequencies observed by Kepler, combined with ground-based spectroscopic data. We present preliminary results from detailed modeling of this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا