No Arabic abstract
Quantum Bell nonlocality allows for the design of protocols that amplify the randomness of public and arbitrarily biased Santha-Vazirani sources, a classically impossible task. Information-theoretical security in these protocols is certified in a device-independent manner, i.e. solely from the observed nonlocal statistics and without any assumption about the inner-workings of the intervening devices. On the other hand, if one is willing to trust on a complete quantum-mechanical description of a protocols devices, the elementary scheme in which a qubit is alternatively measured in a pair of mutually unbiased bases is, straightforwardly, a protocol for randomness amplification. In this work, we study the unexplored middle ground. We prove that full randomness amplification can be achieved without requiring entanglement or a complete characterization of the intervening quantum states and measurements. Based on the energy-bounded framework introduced in [Van Himbeeck et al., Quantum 1, 33 (2017)], our prepare-and-measure protocol is able to amplify the randomness of any public Santha-Vazirani source, requiring the smallest number of inputs and outcomes possible and being secure against quantum adversaries.
A device-independent randomness expansion protocol aims to take an initial random string and generate a longer one, where the security of the protocol does not rely on knowing the inner workings of the devices used to run it. In order to do so, the protocol tests that the devices violate a Bell inequality and one then needs to bound the amount of extractable randomness in terms of the observed violation. The entropy accumulation theorem gives a bound in terms of the single-round von Neumann entropy of any strategy achieving the observed score. Tight bounds on this are known for the one-sided randomness when using the Clauser-Horne-Shimony-Holt (CHSH) game. Here we find the minimum von Neumann entropies for a given CHSH score relevant for one and two sided randomness that can be applied to various protocols. In particular, we show the gain that can be made by using the two-sided randomness and by using a protocol without spot-checking where the input randomness is recycled. We also discuss protocols that fully close the locality loophole while expanding randomness. Although our bounds are mostly numerical, we conjecture analytic formulae for the curves in two cases.
The semi-device-independent approach provides a framework for prepare-and-measure quantum protocols using devices whose behavior must not be characterized nor trusted, except for a single assumption on the dimension of the Hilbert space characterizing the quantum carriers. Here, we propose instead to constrain the quantum carriers through a bound on the mean value of a well-chosen observable. This modified assumption is physically better motivated than a dimension bound and closer to the description of actual experiments. In particular, we consider quantum optical schemes where the source emits quantum states described in an infinite-dimensional Fock space and model our assumption as an upper bound on the average photon number in the emitted states. We characterize the set of correlations that may be exhibited in the simplest possible scenario compatible with our new framework, based on two energy-constrained state preparations and a two-outcome measurement. Interestingly, we uncover the existence of quantum correlations exceeding the set of classical correlations that can be produced by devices behaving in a purely pre-determined fashion (possibly including shared randomness). This feature suggests immediate applications to certified randomness generation. Along this line, we analyze the achievable correlations in several prepare-and-measure optical schemes with a mean photon number constraint and demonstrate that they allow for the generation of certified randomness. Our simplest optical scheme works by the on-off keying of an attenuated laser source followed by photocounting. It opens the path to more sophisticated energy-constrained semi-device-independent quantum cryptography protocols, such as quantum key distribution.
Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of $512$ bits with an average experiment time of less than $5$ min per block and with a certified error bounded by $2^{-64}approx 5.42times 10^{-20}$.
With the growing availability of experimental loophole-free Bell tests, it has become possible to implement a new class of device-independent random number generators whose output can be certified to be uniformly random without requiring a detailed model of the quantum devices used. However, all of these experiments require many input bits in order to certify a small number of output bits, and it is an outstanding challenge to develop a system that generates more randomness than is used. Here, we devise a device-independent spot-checking protocol which uses only uniform bits as input. Implemented with a photonic loophole-free Bell test, we can produce 24% more certified output bits (1,181,264,237) than consumed input bits (953,301,640), which is 5 orders of magnitude more efficient than our previous work [arXiv:1812.07786]. The experiment ran for 91.0 hours, creating randomness at an average rate of 3606 bits/s with a soundness error bounded by $5.7times 10^{-7}$ in the presence of classical side information. Our system will allow for greater trust in public sources of randomness, such as randomness beacons, and the protocols may one day enable high-quality sources of private randomness as the device footprint shrinks.
Randomness expansion where one generates a longer sequence of random numbers from a short one is viable in quantum mechanics but not allowed classically. Device-independent quantum randomness expansion provides a randomness resource of the highest security level. Here, we report the first experimental realization of device-independent quantum randomness expansion secure against quantum side information established through quantum probability estimation. We generate $5.47times10^8$ quantum-proof random bits while consuming $4.39times10^8$ bits of entropy, expanding our store of randomness by $1.08times10^8$ bits at a latency of about $13.1$ h, with a total soundness error $4.6times10^{-10}$. Device-independent quantum randomness expansion not only enriches our understanding of randomness but also sets a solid base to bring quantum-certifiable random bits into realistic applications.