Do you want to publish a course? Click here

Tribologically induced crystal rotation kinematics revealed by electron backscatter diffraction

59   0   0.0 ( 0 )
 Added by Christian Greiner
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tribological loading of metals induces microstructural changes by dislocation-mediated plastic deformation. During continued sliding, combined shear and lattice rotation result in the formation of crystallographic textures which influence friction and wear at the sliding interface. In order to elucidate the fundamental lattice rotation kinematics involved in this process during the early stages of sliding, we conducted unlubricated, single pass sliding experiments on a copper bicrystal. Electron backscatter diffraction (EBSD) performed directly on the bulk surface of the wear tracks in the vicinity of the bicrystal grain boundary reveals subgrain formation and crystal lattice rotations by approximately up to 35{deg}. Predominantly, the tribologically induced crystal rotations appear to be kinematically constrained to rotations around the transverse direction (TD) and occur in both grains, irrespective of load. We demonstrate that inverting the sliding direction (SD) inverts the sense of crystal rotation, but does not change the principal nature of rotation for the majority of indexed EBSD data. A lower proportion of the crystal lattice rotates much farther around TD (roughly up to 90{deg}), accompanied by a superimposed crystal rotation around SD. Detailed analysis reveals that sliding direction and grain orientation possess a systematic influence of how crystal rotations are accommodated. This observation is rationalized in terms of geometry, anisotropic wear track profiles and slip traces. Under very specific conditions, combined crystal rotation and twinning are observed. These detailed insights into the fundamental nature of tribologically induced lattice rotation kinematics may be instrumental in the development of materials with superior tribological properties.



rate research

Read More

A DigitalMicrograph script InsteaDMatic has been developed to facilitate rapid automated continuous rotation electron diffraction (cRED) data acquisition. The script coordinates microscope functions, such as stage rotation, camera functions relevant for data collection, and stores the experiment metadata. The script is compatible with any microscope that can be controlled by DigitalMicrograph and has been tested on both JEOL and Thermo Fisher Scientific microscopes. A proof-of-concept has been performed through employing InsteaDMatic for data collection and structure determination of a ZSM-5 zeolite. The influence of illumination settings and electron dose rate on the quality of diffraction data, unit cell determination and structure solution has been investigated in order to optimize the data acquisition procedure.
149 - W. T. Jin , M. Meven , H. Deng 2019
The magnetic structure of the nonmetallic metal FeCrAs, a compound with the characters of both metals and insulators, was examined as a function of temperature using single-crystal neutron diffraction. The magnetic propagation vector was found to be $mathit{k}$ = (1/3, 1/3, 0), and the magnetic reflections disppeared above $mathit{T_{N}}$ = 116(1) K. In the ground state, the Cr sublattice shows an in-plane spiral antiferromagnetic order. The moment sizes of the Cr ions were found to be small, due to strong magnetic frustration in the distorted Kagome lattice or the itinerant nature of the Cr magnetism, and vary between 0.8 and 1.4 $mu_{B}$ on different sites as expected for a spin-density-wave (SDW) type order. The upper limit of the moment on the Fe sublattice is estimated to be less than 0.1 $mu_{B}$. With increasing temperature up to 95 K, the Cr moments cant out of the $mathit{ab}$ plane gradually, with the in-plane components being suppressed and the out-of-plane components increasing in contrast. This spin-reorientation of Cr moments can explain the dip in the $mathit{c}$-direction magnetic susceptibility and the kink in the magnetic order parameter at $mathit{T_{O}}$ ~ 100 K, a second magnetic transition which was unexplained before. We have also discussed the similarity between FeCrAs and the model itinerant magnet Cr, which exhibits spin-flip transitions and SDW-type antiferromagnetism.
60 - Jun Li , Junjie Li , Kai Sun 2020
It has been technically challenging to concurrently probe the electrons and the lattices in materials during non-equilibrium processes, allowing their correlations to be determined. Here, in a single set of ultrafast electron diffraction patterns taken on the charge-density-wave (CDW) material 1T-TaSeTe, we discover a temporal shift in the diffraction intensity measurements as a function of scattering angle. With the help of dynamic models and theoretical calculations, we show that the ultrafast electrons probe both the valence-electron and lattice dynamic processes, resulting in the temporal shift measurements. Our results demonstrate unambiguously that the CDW is not merely a result of the periodic lattice deformation ever-present in 1T-TaSeTe but has significant electronic origin. This method demonstrates a novel approach for studying many quantum effects that arise from electron-lattice dephasing in molecules and crystals for next-generation devices.
In order to study the metallic ferromagnetism induced by electron doping in the narrow-gab semiconductor FeSb$_2$, single crystals of FeSb$_2$, Fe$_{1-x}$Co$_x$Sb$_2$ ($0 le x le 0.5$) and FeSb$_{2-y}$Te$_y$ ($0 le y le 0.4$), were grown by a simplified self-flux method. From powder x-ray diffraction (XRD) patterns, wavelength-dispersive x-ray spectroscopy (WDX) and x-ray Laue diffraction, pure and doped high-quality single crystals, within the selected solubility range, show only the orthorhombic $Pnnm$ structure of FeSb$_2$ with a monotonic change in lattice parameters with increasing the doping level. In consistence with the model of nearly ferromagnetic small-gap semiconductor, the energy gap of FeSb$_2$ Pauli paramagnet gradually collapses by electron doping before it closes at about $x$ or $y$ = 0.15 and subsequent itinerant electron anisotropic ferromagnetic states are observed with higher doping levels. A magnetic phase diagram is established and discussed in view of proposed theoretical scenarios.
Strongly correlated materials that exhibit an insulator-metal transition are key candidates in the search for new computing platforms. Understanding the pathways and timescales underlying the electrically-driven insulator-metal transition is crucial for uncovering the fundamental limits of device operation. Using stroboscopic electron diffraction, we perform synchronized time-resolved measurements of atomic motions and electronic transport in operating vanadium dioxide switches. We discover an electrically-triggered, isostructural state that forms transiently on microsecond timescales, stabilized by local heterogeneities and interfacial interactions between the equilibrium phases. This metastable phase bears striking similarity to that formed under photoexcitation within picoseconds, suggesting a universal transformation pathway across eight orders of magnitude of timescale. Our results establish a new route for uncovering non-equilibrium and metastable phases in correlated materials, and open avenues for engineering novel dynamical behavior in nanoelectronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا