Do you want to publish a course? Click here

Chemical abundances of three new Ba stars from the Keck/HIRES spectra

184   0   0.0 ( 0 )
 Added by Shuai Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on high resolution, high signal-to-noise (S/N) ratio spectra from Keck/HIRES, we have determined abundances of 20 elements for 18 Ba candidates. The parameter space of these stars are in the range of 4880 $leq$ $rm{T_{eff}}$ $leq$ 6050 K, 2.56 $leq$ log $g$ $leq$ 4.53 dex and -0.27 $leq$ [Fe/H] $leq$ 0.09 dex. It is found that four of them can be identified as Ba stars with [s/Fe] $>$ 0.25 dex (s: Sr, Y, Zr, Ba, La, Ce and Nd), and three of them are newly discovered, which includes two Ba giants (HD 16178 and HD 22233) and one Ba subgiant (HD 2946). Our results show that the abundances of $alpha$, odd and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, Mn, Ni and Cu) for our program stars are similar to those of the thin disk, while the distribution of [hs/ls] (hs: Ba, La, Ce and Nd, ls: Sr, Y and Zr) ratios of our Ba stars is similar to those of the known Ba objects. None of the four Ba stars show clear enhancement in carbon including the known CH subgiant HD 4395. It is found that three of the Ba stars present clear evidences of hosting stellar or sub-stellar companions from the radial velocity data.



rate research

Read More

We have derived elemental abundances of three field red horizontal branch stars using high-resolution (R$simeq$ 45,000), high signal-to-noise ratio (S/N $gtrsim$ 200) $H$ and $K$ band spectra obtained with the Immersion Grating Infrared Spectrograph (IGRINS). We have determined the abundances of 21 elements including $alpha$ (Mg, Si, Ca, S), odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Co, Ni), neutron-capture (Ce, Nd, Yb), and CNO group elements. S, P and K are determined for the first time in these stars. $H$ and $K$ band spectra provide a substantial number of S I lines, which potentially can lead to a more robust exploration of the role of sulfur in the cosmochemical evolution of the Galaxy. We have also derived $^{12}$C/$^{13}$C ratios from synthetic spectra of the first overtone (2$-$0) and (3$-$1) $^{12}$CO and (2$-$0) $^{13}$CO lines near 23440 AA and $^{13}$CO (3$-$1) lines at about 23730 AA. Comparison of our results with the ones obtained from the optical region suggests that the IGRINS high-resolution $H$ and $K$ band spectra offer more internally self-consistent atomic lines of the same species for several elements, especially the $alpha$ elements. This in turn provides more reliable abundances for the elements with analytical difficulties in the optical spectral range.
110 - Malena Rice , John Brewer 2020
To accurately interpret the observed properties of exoplanets, it is necessary to first obtain a detailed understanding of host star properties. However, physical models that analyze stellar properties on a per-star basis can become computationally intractable for sufficiently large samples. Furthermore, these models are limited by the wavelength coverage of available spectra. We combine previously derived spectral properties from the Spectroscopic Properties of Cool Stars (SPOCS) catalog (Brewer et al. 2016) with generative modeling using The Cannon to produce a model capable of deriving stellar parameters ($log g$, $T_{mathrm{eff}}$, and $vsin i$) and 15 elemental abundances (C, N, O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, and Y) for stellar spectra observed with Keck Observatorys High Resolution Echelle Spectrometer (HIRES). We demonstrate the high accuracy and precision of our model, which takes just $sim$3 seconds to classify each star, through cross-validation with pre-labeled spectra from the SPOCS sample. Our trained model, which takes continuum-normalized template spectra as its inputs, is publicly available at https://github.com/malenarice/keckspec. Finally, we interpolate our spectra and employ the same modeling scheme to recover labels for 477 stars using archival stellar spectra obtained prior to Kecks 2004 detector upgrade, demonstrating that our interpolated model can successfully predict stellar labels for different spectrographs that have (1) sufficiently similar systematics and (2) a wavelength range that substantially overlaps with that of the post-2004 HIRES spectra.
We present results from the analysis of high-resolution spectra obtained with the Keck HIRES spectrograph for a sample of 17 candidate extremely metal-poor (EMP) stars originally selected from commissioning data obtained with the SkyMapper telescope. Fourteen of the stars have not been observed previously at high dispersion. Three have [Fe/H]<=-3.0 while the remainder, with two more metal-rich exceptions, have -3.0<=[Fe/H]<=-2.0 dex. Apart from Fe, we also derive abundances for the elements C, N, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, and Zn, and for n-capture elements Sr, Ba, and Eu. None of the current sample of stars is found to be carbon-rich. In general our chemical abundances follow previous trends found in the literature, although we note that two of the most metal-poor stars show very low [Ba/Fe] (~-1.7) coupled with low [Sr/Ba] (~-0.3). Such stars are relatively rare in the Galactic halo. One further star, and possibly two others, meet the criteria for classification as a r-I star. This study, together with that of Jacobson et al. (2015), completes the outcomes of the SkyMapper commissioning data survey for EMP stars.
Chemical abundances for 15 elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are presented for 83 stellar members of the 4 Gyr old solar-metallicity open cluster M67. The sample contains stars spanning a wide range of evolutionary phases, from G dwarfs to red clump stars. The abundances were derived from near-IR ($lambda$1.5 -- 1.7$mu$m) high-resolution spectra ($R$ = 22,500) from the SDSS-IV/APOGEE survey. A 1-D LTE abundance analysis was carried out using the APOGEE synthetic spectral libraries, via chi-square minimization of the synthetic and observed spectra with the qASPCAP code. We found significant abundance differences ($sim$0.05 -- 0.30 dex) between the M67 member stars as a function of the stellar mass (or position on the HR diagram), where the abundance patterns exhibit a general depletion (in [X/H]) in stars at the main-sequence turnoff. The amount of the depletion is different for different elements. We find that atomic diffusion models provide, in general, good agreement with the abundance trends for most chemical species, supporting recent studies indicating that measurable atomic diffusion operates in M67 stars.
This chapter presents a review on the latest advances in the computation of physical conditions and chemical abundances of elements present in photoionized gas H II regions and planetary nebulae). The arrival of highly sensitive spectrographs attached to large telescopes and the development of more sophisticated and detailed atomic data calculations and ionization correction factors have helped to raise the number of ionic species studied in photoionized nebulae in the last years, as well as to reduce the uncertainties in the computed abundances. Special attention will be given to the detection of very faint lines such as heavy-element recombination lines of C, N and O in H II regions and planetary nebulae, and collisionally excited lines of neutron-capture elements (Z >30) in planetary nebulae.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا