Induced superconducting pairing in integer quantum Hall edge states


Abstract in English

Indium Arsenide (InAs) near surface quantum wells (QWs) are ideal for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the ones in the superconductor. In this work we present results for InAs QWs in the quantum Hall regime placed in proximity of superconducting NbTiN. We observe a negative downstream resistance with a corresponding reduction of Hall (upstream) resistance. We analyze the experimental data using the Landauer-B{u}ttiker formalism, generalized to allow for Andreev reflection processes. Our analysis is consistent with a lower-bound for the averaged Andreev conversion of about 15%. We attribute the high efficiency of Andreev conversion in our devices to the large transparency of the InAs/NbTiN interface and the consequent strong hybridization of the QH edge modes with the states in the superconductor.

Download