Do you want to publish a course? Click here

Segmentation of Lungs COVID Infected Regions by Attention Mechanism and Synthetic Data

106   0   0.0 ( 0 )
 Added by Shadrokh Samavi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Coronavirus has caused hundreds of thousands of deaths. Fatalities could decrease if every patient could get suitable treatment by the healthcare system. Machine learning, especially computer vision methods based on deep learning, can help healthcare professionals diagnose and treat COVID-19 infected cases more efficiently. Hence, infected patients can get better service from the healthcare system and decrease the number of deaths caused by the coronavirus. This research proposes a method for segmenting infected lung regions in a CT image. For this purpose, a convolutional neural network with an attention mechanism is used to detect infected areas with complex patterns. Attention blocks improve the segmentation accuracy by focusing on informative parts of the image. Furthermore, a generative adversarial network generates synthetic images for data augmentation and expansion of small available datasets. Experimental results show the superiority of the proposed method compared to some existing procedures.



rate research

Read More

The new coronavirus infection has shocked the world since early 2020 with its aggressive outbreak. Rapid detection of the disease saves lives, and relying on medical imaging (Computed Tomography and X-ray) to detect infected lungs has shown to be effective. Deep learning and convolutional neural networks have been used for image analysis in this context. However, accurate identification of infected regions has proven challenging for two main reasons. Firstly, the characteristics of infected areas differ in different images. Secondly, insufficient training data makes it challenging to train various machine learning algorithms, including deep-learning models. This paper proposes an approach to segment lung regions infected by COVID-19 to help cardiologists diagnose the disease more accurately, faster, and more manageable. We propose a bifurcated 2-D model for two types of segmentation. This model uses a shared encoder and a bifurcated connection to two separate decoders. One decoder is for segmentation of the healthy region of the lungs, while the other is for the segmentation of the infected regions. Experiments on publically available images show that the bifurcated structure segments infected regions of the lungs better than state of the art.
Processing medical data to find abnormalities is a time-consuming and costly task, requiring tremendous efforts from medical experts. Therefore, Ai has become a popular tool for the automatic processing of medical data, acting as a supportive tool for doctors. AI tools highly depend on data for training the models. However, there are several constraints to access to large amounts of medical data to train machine learning algorithms in the medical domain, e.g., due to privacy concerns and the costly, time-consuming medical data annotation process. To address this, in this paper we present a novel synthetic data generation pipeline called SinGAN-Seg to produce synthetic medical data with the corresponding annotated ground truth masks. We show that these synthetic data generation pipelines can be used as an alternative to bypass privacy concerns and as an alternative way to produce artificial segmentation datasets with corresponding ground truth masks to avoid the tedious medical data annotation process. As a proof of concept, we used an open polyp segmentation dataset. By training UNet++ using both the real polyp segmentation dataset and the corresponding synthetic dataset generated from the SinGAN-Seg pipeline, we show that the synthetic data can achieve a very close performance to the real data when the real segmentation datasets are large enough. In addition, we show that synthetic data generated from the SinGAN-Seg pipeline improving the performance of segmentation algorithms when the training dataset is very small. Since our SinGAN-Seg pipeline is applicable for any medical dataset, this pipeline can be used with any other segmentation datasets.
The pandemic of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also known as COVID-19 has been spreading worldwide, causing rampant loss of lives. Medical imaging such as computed tomography (CT), X-ray, etc., plays a significant role in diagnosing the patients by presenting the excellent details about the structure of the organs. However, for any radiologist analyzing such scans is a tedious and time-consuming task. The emerging deep learning technologies have displayed its strength in analyzing such scans to aid in the faster diagnosis of the diseases and viruses such as COVID-19. In the present article, an automated deep learning based model, COVID-19 hierarchical segmentation network (CHS-Net) is proposed that functions as a semantic hierarchical segmenter to identify the COVID-19 infected regions from lungs contour via CT medical imaging. The CHS-Net is developed with the two cascaded residual attention inception U-Net (RAIU-Net) models where first generates lungs contour maps and second generates COVID-19 infected regions. RAIU-Net comprises of a residual inception U-Net model with spectral spatial and depth attention network (SSD), consisting of contraction and expansion phases of depthwise separable convolutions and hybrid pooling (max and spectral pooling) to efficiently encode and decode the semantic and varying resolution information. The CHS-Net is trained with the segmentation loss function that is the weighted average of binary cross entropy loss and dice loss to penalize false negative and false positive predictions. The approach is compared with the recently proposed research works on the basis of standard metrics. With extensive trials, it is observed that the proposed approach outperformed the recently proposed approaches and effectively segments the COVID-19 infected regions in the lungs.
The novel coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy. However, there is still lack of studies on effectively quantifying the lung infection caused by COVID-19. As a basic but challenging task of the diagnostic framework, segmentation plays a crucial role in accurate quantification of COVID-19 infection measured by computed tomography (CT) images. To this end, we proposed a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions. Specifically, we use the Aggregated Residual Transformations to learn a robust and expressive feature representation and apply the soft attention mechanism to improve the capability of the model to distinguish a variety of symptoms of the COVID-19. With a public CT image dataset, we validate the efficacy of the proposed algorithm in comparison with other competing methods. Experimental results demonstrate the outstanding performance of our algorithm for automated segmentation of COVID-19 Chest CT images. Our study provides a promising deep leaning-based segmentation tool to lay a foundation to quantitative diagnosis of COVID-19 lung infection in CT images.
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network. The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation. Performance of the proposed lung segmentation algorithm was extensively evaluated on CT scans of subjects with COPD, confirmed COVID-19, lung cancer, and IPF, despite no labeled training data of the latter three diseases. Lobar segmentations were obtained using the left and right lung segmentation as input to the LobeNet algorithm. Regional lobar analysis was performed using hierarchical clustering to identify radiographic subtypes of COVID-19. The proposed lung segmentation algorithm was quantitatively evaluated using semi-automated and manually-corrected segmentations in 87 COVID-19 CT images, achieving an average symmetric surface distance of $0.495 pm 0.309$ mm and Dice coefficient of $0.985 pm 0.011$. Hierarchical clustering identified four radiographical phenotypes of COVID-19 based on lobar fractions of consolidated and poorly aerated tissue. Lower left and lower right lobes were consistently more afflicted with poor aeration and consolidation. However, the most severe cases demonstrated involvement of all lobes. The polymorphic training approach was able to accurately segment COVID-19 cases with diffuse consolidation without requiring COVID-19 cases for training.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا