Expanding the momentum field of view in angle-resolved photoemission systems with hemispherical analyzers


Abstract in English

In photoelectron spectroscopy, the measured electron momentum range is intrinsically related to the excitation photon energy. Low photon energies $<10$ eV are commonly encountered in laser-based photoemission and lead to a momentum range that is smaller than the Brillouin zones of most materials. This can become a limiting factor when studying condensed matter with laser-based photoemission. An additional restriction is introduced by widely used hemispherical analyzers that record only electrons photoemitted in a solid angle set by the aperture size at the analyzer entrance. Here, we present an upgrade to increase the effective solid angle that is measured with a hemispherical analyzer. We achieve this by accelerating the photoelectrons towards the analyzer with an electric field that is generated by a bias voltage on the sample. Our experimental geometry is comparable to a parallel plate capacitor and, therefore, we approximate the electric field to be uniform along the photoelectron trajectory. With this assumption, we developed an analytic, parameter-free model that relates the measured angles to the electron momenta in the solid and verify its validity by comparing with experimental results on the charge density wave material TbTe$_3$. By providing a larger field of view in momentum space, our approach using a bias potential considerably expands the flexibility of laser-based photoemission setups.

Download