Do you want to publish a course? Click here

Provably Efficient Generative Adversarial Imitation Learning for Online and Offline Setting with Linear Function Approximation

107   0   0.0 ( 0 )
 Added by Yufeng Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In generative adversarial imitation learning (GAIL), the agent aims to learn a policy from an expert demonstration so that its performance cannot be discriminated from the expert policy on a certain predefined reward set. In this paper, we study GAIL in both online and offline settings with linear function approximation, where both the transition and reward function are linear in the feature maps. Besides the expert demonstration, in the online setting the agent can interact with the environment, while in the offline setting the agent only accesses an additional dataset collected by a prior. For online GAIL, we propose an optimistic generative adversarial policy optimization algorithm (OGAP) and prove that OGAP achieves $widetilde{mathcal{O}}(H^2 d^{3/2}K^{1/2}+KH^{3/2}dN_1^{-1/2})$ regret. Here $N_1$ represents the number of trajectories of the expert demonstration, $d$ is the feature dimension, and $K$ is the number of episodes. For offline GAIL, we propose a pessimistic generative adversarial policy optimization algorithm (PGAP). For an arbitrary additional dataset, we obtain the optimality gap of PGAP, achieving the minimax lower bound in the utilization of the additional dataset. Assuming sufficient coverage on the additional dataset, we show that PGAP achieves $widetilde{mathcal{O}}(H^{2}dK^{-1/2} +H^2d^{3/2}N_2^{-1/2}+H^{3/2}dN_1^{-1/2} )$ optimality gap. Here $N_2$ represents the number of trajectories of the additional dataset with sufficient coverage.

rate research

Read More

We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori. Due to the lack of further interactions with the environment, offline RL suffers from the insufficient coverage of the dataset, which eludes most existing theoretical analysis. In this paper, we propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function. Such a penalty function simply flips the sign of the bonus function for promoting exploration in online RL, which makes it easily implementable and compatible with general function approximators. Without assuming the sufficient coverage of the dataset, we establish a data-dependent upper bound on the suboptimality of PEVI for general Markov decision processes (MDPs). When specialized to linear MDPs, it matches the information-theoretic lower bound up to multiplicative factors of the dimension and horizon. In other words, pessimism is not only provably efficient but also minimax optimal. In particular, given the dataset, the learned policy serves as the best effort among all policies, as no other policies can do better. Our theoretical analysis identifies the critical role of pessimism in eliminating a notion of spurious correlation, which emerges from the irrelevant trajectories that are less covered by the dataset and not informative for the optimal policy.
We study reinforcement learning (RL) with linear function approximation under the adaptivity constraint. We consider two popular limited adaptivity models: batch learning model and rare policy switch model, and propose two efficient online RL algorithms for linear Markov decision processes. In specific, for the batch learning model, our proposed LSVI-UCB-Batch algorithm achieves an $tilde O(sqrt{d^3H^3T} + dHT/B)$ regret, where $d$ is the dimension of the feature mapping, $H$ is the episode length, $T$ is the number of interactions and $B$ is the number of batches. Our result suggests that it suffices to use only $sqrt{T/dH}$ batches to obtain $tilde O(sqrt{d^3H^3T})$ regret. For the rare policy switch model, our proposed LSVI-UCB-RareSwitch algorithm enjoys an $tilde O(sqrt{d^3H^3T[1+T/(dH)]^{dH/B}})$ regret, which implies that $dHlog T$ policy switches suffice to obtain the $tilde O(sqrt{d^3H^3T})$ regret. Our algorithms achieve the same regret as the LSVI-UCB algorithm (Jin et al., 2019), yet with a substantially smaller amount of adaptivity.
Offline reinforcement learning seeks to utilize offline (observational) data to guide the learning of (causal) sequential decision making strategies. The hope is that offline reinforcement learning coupled with function approximation methods (to deal with the curse of dimensionality) can provide a means to help alleviate the excessive sample complexity burden in modern sequential decision making problems. However, the extent to which this broader approach can be effective is not well understood, where the literature largely consists of sufficient conditions. This work focuses on the basic question of what are necessary representational and distributional conditions that permit provable sample-efficient offline reinforcement learning. Perhaps surprisingly, our main result shows that even if: i) we have realizability in that the true value function of emph{every} policy is linear in a given set of features and 2) our off-policy data has good coverage over all features (under a strong spectral condition), then any algorithm still (information-theoretically) requires a number of offline samples that is exponential in the problem horizon in order to non-trivially estimate the value of emph{any} given policy. Our results highlight that sample-efficient offline policy evaluation is simply not possible unless significantly stronger conditions hold; such conditions include either having low distribution shift (where the offline data distribution is close to the distribution of the policy to be evaluated) or significantly stronger representational conditions (beyond realizability).
Designing provably efficient algorithms with general function approximation is an important open problem in reinforcement learning. Recently, Wang et al.~[2020c] establish a value-based algorithm with general function approximation that enjoys $widetilde{O}(mathrm{poly}(dH)sqrt{K})$footnote{Throughout the paper, we use $widetilde{O}(cdot)$ to suppress logarithm factors. } regret bound, where $d$ depends on the complexity of the function class, $H$ is the planning horizon, and $K$ is the total number of episodes. However, their algorithm requires $Omega(K)$ computation time per round, rendering the algorithm inefficient for practical use. In this paper, by applying online sub-sampling techniques, we develop an algorithm that takes $widetilde{O}(mathrm{poly}(dH))$ computation time per round on average, and enjoys nearly the same regret bound. Furthermore, the algorithm achieves low switching cost, i.e., it changes the policy only $widetilde{O}(mathrm{poly}(dH))$ times during its execution, making it appealing to be implemented in real-life scenarios. Moreover, by using an upper-confidence based exploration-driven reward function, the algorithm provably explores the environment in the reward-free setting. In particular, after $widetilde{O}(mathrm{poly}(dH))/epsilon^2$ rounds of exploration, the algorithm outputs an $epsilon$-optimal policy for any given reward function.
This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framework. Instead of directly maximizing rewards, GASIL focuses on reproducing past good trajectories, which can potentially make long-term credit assignment easier when rewards are sparse and delayed. GASIL can be easily combined with any policy gradient objective by using GASIL as a learned shaped reward function. Our experimental results show that GASIL improves the performance of proximal policy optimization on 2D Point Mass and MuJoCo environments with delayed reward and stochastic dynamics.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا