No Arabic abstract
Clinical trials with a hybrid control arm (a control arm constructed from a combination of randomized patients and real-world data on patients receiving usual care in standard clinical practice) have the potential to decrease the cost of randomized trials while increasing the proportion of trial patients given access to novel therapeutics. However, due to stringent trial inclusion criteria and differences in care and data quality between trials and community practice, trial patients may have systematically different outcomes compared to their real-world counterparts. We propose a new method for analyses of trials with a hybrid control arm that efficiently controls bias and type I error. Under our proposed approach, selected real-world patients are weighted by a function of the on-trial score, which reflects their similarity to trial patients. In contrast to previously developed hybrid control designs that assign the same weight to all real-world patients, our approach upweights of real-world patients who more closely resemble randomized control patients while dissimilar patients are discounted. Estimates of the treatment effect are obtained via Cox proportional hazards models. We compare our approach to existing approaches via simulations and apply these methods to a study using electronic health record data. Our proposed method is able to control type I error, minimize bias, and decrease variance when compared to using only trial data in nearly all scenarios examined. Therefore, our new approach can be used when conducting clinical trials by augmenting the standard-of-care arm with weighted patients from the EHR to increase power without inducing bias.
Just-in-time adaptive interventions (JITAIs) are time-varying adaptive interventions that use frequent opportunities for the intervention to be adapted--weekly, daily, or even many times a day. The micro-randomized trial (MRT) has emerged for use in informing the construction of JITAIs. MRTs can be used to address research questions about whether and under what circumstances JITAI components are effective, with the ultimate objective of developing effective and efficient JITAI. The purpose of this article is to clarify why, when, and how to use MRTs; to highlight elements that must be considered when designing and implementing an MRT; and to review primary and secondary analyses methods for MRTs. We briefly review key elements of JITAIs and discuss a variety of considerations that go into planning and designing an MRT. We provide a definition of causal excursion effects suitable for use in primary and secondary analyses of MRT data to inform JITAI development. We review the weighted and centered least-squares (WCLS) estimator which provides consistent causal excursion effect estimators from MRT data. We describe how the WCLS estimator along with associated test statistics can be obtained using standard statistical software such as R (R Core Team, 2019). Throughout we illustrate the MRT design and analyses using the HeartSteps MRT, for developing a JITAI to increase physical activity among sedentary individuals. We supplement the HeartSteps MRT with two other MRTs, SARA and BariFit, each of which highlights different research questions that can be addressed using the MRT and experimental design considerations that might arise.
Randomized controlled trials (RCTs) are the gold standard for assessing drug safety and efficacy. However, RCTs have some drawbacks which have led to the use of single-arm studies to make certain internal drug development and regulatory decisions, particularly in oncology. Hybrid controlled trials with real-world data (RWD), in which the control arm is composed of both trial and real-world patients, have the potential to help address some of the shortcomings of both RCTs and single-arm studies in particular situations, such as when a disease has low prevalence or when the standard of care to be used in the control arm is ineffective or highly toxic and an experimental therapy shows early promise. This paper discusses why it may be beneficial to consider hybrid controlled trials with RWD, what such a design entails, when it may be appropriate, and how to conduct the analyses. We propose a novel two-step borrowing method for the construction of hybrid control arms. We use simulations to demonstrate the operating characteristics of dynamic and static borrowing methods, and highlight the trade-offs and analytic decisions that study teams will need to address when designing a hybrid study.
Galileon gravity is a robust theoretical alternative to general relativity with a cosmological constant for explaining cosmic acceleration, with interesting properties such as having second order field equations and a shift symmetry. While either its predictions for the cosmic expansion or growth histories can approach standard Lambda CDM, we demonstrate the incompatibility of both doing so simultaneously. Already current observational constraints can severely disfavor an entire class of Galileon gravity models that do not couple directly to matter, ruling them out as an alternative to Lambda CDM.
X-ray scattering experiments using Free Electron Lasers (XFELs) are a powerful tool to determine the molecular structure and function of unknown samples (such as COVID-19 viral proteins). XFEL experiments are a challenge to computing in two ways: i) due to the high cost of running XFELs, a fast turnaround time from data acquisition to data analysis is essential to make informed decisions on experimental protocols; ii) data collection rates are growing exponentially, requiring new scalable algorithms. Here we report our experiences analyzing data from two experiments at the Linac Coherent Light Source (LCLS) during September 2020. Raw data were analyzed on NERSCs Cori XC40 system, using the Superfacility paradigm: our workflow automatically moves raw data between LCLS and NERSC, where it is analyzed using the software package CCTBX. We achieved real time data analysis with a turnaround time from data acquisition to full molecular reconstruction in as little as 10 min -- sufficient time for the experiments operators to make informed decisions. By hosting the data analysis on Cori, and by automating LCLS-NERSC interoperability, we achieved a data analysis rate which matches the data acquisition rate. Completing data analysis with 10 mins is a first for XFEL experiments and an important milestone if we are to keep up with data collection trends.
A small n, sequential, multiple assignment, randomized trial (snSMART) is a small sample, two-stage design where participants receive up to two treatments sequentially, but the second treatment depends on response to the first treatment. The treatment effect of interest in an snSMART is the first-stage response rate, but outcomes from both stages can be used to obtain more information from a small sample. A novel way to incorporate the outcomes from both stages applies power prior models, in which first stage outcomes from an snSMART are regarded as the primary data and second stage outcomes are regarded as supplemental. We apply existing power prior models to snSMART data, and we also develop new extensions of power prior models. All methods are compared to each other and to the Bayesian joint stage model (BJSM) via simulation studies. By comparing the biases and the efficiency of the response rate estimates among all proposed power prior methods, we suggest application of Fishers exact test or the Bhattacharyyas overlap measure to an snSMART to estimate the treatment effect in an snSMART, which both have performance mostly as good or better than the BJSM. We describe the situations where each of these suggested approaches is preferred.