Do you want to publish a course? Click here

An identity in distribution between full-space and half-space log-gamma polymers

71   0   0.0 ( 0 )
 Added by Shouda Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove an identity in distribution between two kinds of partition functions for the log-gamma directed polymer model: (1) the point-to-point partition function in a quadrant, (2) the point-to-line partition function in an octant. As an application, we prove that the point-to-line free energy of the log-gamma polymer in an octant obeys a phase transition depending on the strength of the noise along the boundary. This transition of (de)pinning by randomness was first predicted in physics by Kardar in 1985 and proved rigorously for zero temperature models by Baik and Rains in 2001. While it is expected to arise universally for models in the Kardar-Parisi-Zhang universality class, this is the first positive temperature model for which this transition can be rigorously established.



rate research

Read More

In this paper we study stationary last passage percolation (LPP) in half-space geometry. We determine the limiting distribution of the last passage time in a critical window close to the origin. The result is a new two-parameter family of distributions: one parameter for the strength of the diagonal bounding the half-space (strength of the source at the origin in the equivalent TASEP language) and the other for the distance of the point of observation from the origin. It should be compared with the one-parameter family giving the Baik--Rains distributions for full-space geometry. We finally show that far enough away from the characteristic line, our distributions indeed converge to the Baik--Rains family. We derive our results using a related integrable model having Pfaffian structure together with careful analytic continuation and steepest descent analysis.
We study the multipoint distribution of stationary half-space last passage percolation with exponentially weighted times. We derive both finite-size and asymptotic results for this distribution. In the latter case we observe a new one-parameter process we call half-space Airy stat. It is a one-parameter generalization of the Airy stat process of Baik-Ferrari-Peche, which is recovered far away from the diagonal. All these results extend the one-point results previously proven by the authors.
We prove that the random variable $ct=argmax_{tinrr}{aip(t)-t^2}$ has tails which decay like $e^{-ct^3}$. The distribution of $ct$ is a universal distribution which governs the rescaled endpoint of directed polymers in 1+1 dimensions for large time or temperature.
176 - N.V. Krylov 2008
We extend several known results on solvability in the Sobolev spaces $W^{1}_{p}$, $pin[2,infty)$, of SPDEs in divergence form in $bR^{d}_{+}$ to equations having coefficients which are discontinuous in the space variable.
We consider the compressible Navier--Stokes equation in a perturbed half-space with an outflow boundary condition as well as the supersonic condition. For a half-space, it has been known that a certain planar stationary solution exist and it is time-asymptotically stable. The planar stationary solution is independent of the tangential directions and its velocities of the tangential directions are zero. In this paper, we show the unique existence of stationary solutions for the perturbed half-space. The feature of our work is that our stationary solution depends on all directions and has multidirectional flow. Furthermore, we also prove the asymptotic stability of this stationary solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا