Do you want to publish a course? Click here

Unsupervised Cross-Lingual Speech Emotion Recognition Using Pseudo Multilabel

97   0   0.0 ( 0 )
 Added by Jin Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Speech Emotion Recognition (SER) in a single language has achieved remarkable results through deep learning approaches in the last decade. However, cross-lingual SER remains a challenge in real-world applications due to a great difference between the source and target domain distributions. To address this issue, we propose an Unsupervised Cross-Lingual Neural Network with Pseudo Multilabel (UCNNPM) that is trained to learn the emotion similarities between source domain features inside an external memory adjusted to identify emotion in cross-lingual databases. UCNNPM introduces a novel approach that leverages external memory to store source domain features and generates pseudo multilabel for each target domain data by computing the similarities between the external memory and the target domain features. We evaluate our approach on multiple different languages of speech emotion databases. Experimental results show our proposed approach significantly improves the weighted accuracy (WA) across multiple low-resource languages on Urdu, Skropus, ShEMO, and EMO-DB corpus.



rate research

Read More

The majority of existing speech emotion recognition models are trained and evaluated on a single corpus and a single language setting. These systems do not perform as well when applied in a cross-corpus and cross-language scenario. This paper presents results for speech emotion recognition for 4 languages in both single corpus and cross corpus setting. Additionally, since multi-task learning (MTL) with gender, naturalness and arousal as auxiliary tasks has shown to enhance the generalisation capabilities of the emotion models, this paper introduces language ID as another auxiliary task in MTL framework to explore the role of spoken language on emotion recognition which has not been studied yet.
This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages.
Speech emotion recognition is a challenging task and an important step towards more natural human-machine interaction. We show that pre-trained language models can be fine-tuned for text emotion recognition, achieving an accuracy of 69.5% on Task 4A of SemEval 2017, improving upon the previous state of the art by over 3% absolute. We combine these language models with speech emotion recognition, achieving results of 73.5% accuracy when using provided transcriptions and speech data on a subset of four classes of the IEMOCAP dataset. The use of noise-induced transcriptions and speech data results in an accuracy of 71.4%. For our experiments, we created IEmoNet, a modular and adaptable bimodal framework for speech emotion recognition based on pre-trained language models. Lastly, we discuss the idea of using an emotional classifier as a reward for reinforcement learning as a step towards more successful and convenient human-machine interaction.
This paper introduces scattering transform for speech emotion recognition (SER). Scattering transform generates feature representations which remain stable to deformations and shifting in time and frequency without much loss of information. In speech, the emotion cues are spread across time and localised in frequency. The time and frequency invariance characteristic of scattering coefficients provides a representation robust against emotion irrelevant variations e.g., different speakers, language, gender etc. while preserving the variations caused by emotion cues. Hence, such a representation captures the emotion information more efficiently from speech. We perform experiments to compare scattering coefficients with standard mel-frequency cepstral coefficients (MFCCs) over different databases. It is observed that frequency scattering performs better than time-domain scattering and MFCCs. We also investigate layer-wise scattering coefficients to analyse the importance of time shift and deformation stable scalogram and modulation spectrum coefficients for SER. We observe that layer-wise coefficients taken independently also perform better than MFCCs.
Emotion represents an essential aspect of human speech that is manifested in speech prosody. Speech, visual, and textual cues are complementary in human communication. In this paper, we study a hybrid fusion method, referred to as multi-modal attention network (MMAN) to make use of visual and textual cues in speech emotion recognition. We propose a novel multi-modal attention mechanism, cLSTM-MMA, which facilitates the attention across three modalities and selectively fuse the information. cLSTM-MMA is fused with other uni-modal sub-networks in the late fusion. The experiments show that speech emotion recognition benefits significantly from visual and textual cues, and the proposed cLSTM-MMA alone is as competitive as other fusion methods in terms of accuracy, but with a much more compact network structure. The proposed hybrid network MMAN achieves state-of-the-art performance on IEMOCAP database for emotion recognition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا