Do you want to publish a course? Click here

Batch Curation for Unsupervised Contrastive Representation Learning

75   0   0.0 ( 0 )
 Added by Michael Welle
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The state-of-the-art unsupervised contrastive visual representation learning methods that have emerged recently (SimCLR, MoCo, SwAV) all make use of data augmentations in order to construct a pretext task of instant discrimination consisting of similar and dissimilar pairs of images. Similar pairs are constructed by randomly extracting patches from the same image and applying several other transformations such as color jittering or blurring, while transformed patches from different image instances in a given batch are regarded as dissimilar pairs. We argue that this approach can result similar pairs that are textit{semantically} dissimilar. In this work, we address this problem by introducing a textit{batch curation} scheme that selects batches during the training process that are more inline with the underlying contrastive objective. We provide insights into what constitutes beneficial similar and dissimilar pairs as well as validate textit{batch curation} on CIFAR10 by integrating it in the SimCLR model.



rate research

Read More

Contrastive unsupervised representation learning (CURL) is the state-of-the-art technique to learn representations (as a set of features) from unlabelled data. While CURL has collected several empirical successes recently, theoretical understanding of its performance was still missing. In a recent work, Arora et al. (2019) provide the first generalisation bounds for CURL, relying on a Rademacher complexity. We extend their framework to the flexible PAC-Bayes setting, allowing us to deal with the non-iid setting. We present PAC-Bayesian generalisation bounds for CURL, which are then used to derive a new representation learning algorithm. Numerical experiments on real-life datasets illustrate that our algorithm achieves competitive accuracy, and yields non-vacuous generalisation bounds.
Contrastive learning (CL) is effective in learning data representations without label supervision, where the encoder needs to contrast each positive sample over multiple negative samples via a one-vs-many softmax cross-entropy loss. However, conventional CL is sensitive to how many negative samples are included and how they are selected. Proposed in this paper is a doubly CL strategy that contrasts positive samples and negative ones within themselves separately. We realize this strategy with contrastive attraction and contrastive repulsion (CACR) makes the query not only exert a greater force to attract more distant positive samples but also do so to repel closer negative samples. Theoretical analysis reveals the connection between CACR and CL from the perspectives of both positive attraction and negative repulsion and shows the benefits in both efficiency and robustness brought by separately contrasting within the sampled positive and negative pairs. Extensive large-scale experiments on standard vision tasks show that CACR not only consistently outperforms existing CL methods on benchmark datasets in representation learning, but also provides interpretable contrastive weights, demonstrating the efficacy of the proposed doubly contrastive strategy.
Improving sample efficiency is a key research problem in reinforcement learning (RL), and CURL, which uses contrastive learning to extract high-level features from raw pixels of individual video frames, is an efficient algorithm~citep{srinivas2020curl}. We observe that consecutive video frames in a game are highly correlated but CURL deals with them independently. To further improve data efficiency, we propose a new algorithm, masked contrastive representation learning for RL, that takes the correlation among consecutive inputs into consideration. In addition to the CNN encoder and the policy network in CURL, our method introduces an auxiliary Transformer module to leverage the correlations among video frames. During training, we randomly mask the features of several frames, and use the CNN encoder and Transformer to reconstruct them based on the context frames. The CNN encoder and Transformer are jointly trained via contrastive learning where the reconstructed features should be similar to the ground-truth ones while dissimilar to others. During inference, the CNN encoder and the policy network are used to take actions, and the Transformer module is discarded. Our method achieves consistent improvements over CURL on $14$ out of $16$ environments from DMControl suite and $21$ out of $26$ environments from Atari 2600 Games. The code is available at https://github.com/teslacool/m-curl.
Recent work learns contextual representations of source code by reconstructing tokens from their context. For downstream semantic understanding tasks like summarizing code in English, these representations should ideally capture program functionality. However, we show that the popular reconstruction-based BERT model is sensitive to source code edits, even when the edits preserve semantics. We propose ContraCode: a contrastive pre-training task that learns code functionality, not form. ContraCode pre-trains a neural network to identify functionally similar variants of a program among many non-equivalent distractors. We scalably generate these variants using an automated source-to-source compiler as a form of data augmentation. Contrastive pre-training improves JavaScript summarization and TypeScript type inference accuracy by 2% to 13%. We also propose a new zero-shot JavaScript code clone detection dataset, showing that ContraCode is both more robust and semantically meaningful. On it, we outperform RoBERTa by 39% AUROC in an adversarial setting and up to 5% on natural code.
Unsupervised representation learning has recently received lots of interest due to its powerful generalizability through effectively leveraging large-scale unlabeled data. There are two prevalent approaches for this, contrastive learning and generative pre-training, where the former learns representations from instance-wise discrimination tasks and the latter learns them from estimating the likelihood. These seemingly orthogonal approaches have their own strengths and weaknesses. Contrastive learning tends to extract semantic information and discards details irrelevant for classifying objects, making the representations effective for discriminative tasks while degrading robustness to out-of-distribution data. On the other hand, the generative pre-training directly estimates the data distribution, so the representations tend to be robust but not optimal for discriminative tasks. In this paper, we show that we could achieve the best of both worlds by a hybrid training scheme. Specifically, we demonstrated that a transformer-based encoder-decoder architecture trained with both contrastive and generative losses can learn highly discriminative and robust representations without hurting the generative performance. We extensively validate our approach on various tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا