Do you want to publish a course? Click here

Regularity of integral closure of powers of edge ideals

131   0   0.0 ( 0 )
 Added by Arvind Kumar Dr.
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this article, we study the regularity of integral closure of powers of edge ideals. We obtain a lower bound for the regularity of integral closure of powers of edge ideals in terms of induced matching number of graphs. We prove that the regularity of integral closure of powers of edge ideals of graphs with at most two odd cycles is the same as the regularity of their powers.



rate research

Read More

165 - Douglas A. Leonard 2012
The Qth-power algorithm for computing structured global presentations of integral closures of affine domains over finite fields is modified to compute structured presentations of integral closures of ideals in affine domains over finite fields relative to a local monomial ordering. A non-homogeneous version of the standard (homogeneous) Rees algebra is introduced as well.
In this article, we prove that for several classes of graphs, the Castelnuovo-Mumford regularity of symbolic powers of their edge ideals coincide with that of their ordinary powers.
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We determine a class of non-squarefree ideals, arising from some particular graphs, which are normally torsion-free.
134 - Hiroju Kanno 2020
In this paper, we define (im, reg)-invariant extension of graphs and propose a new approach for Nevo and Peevas conjecture which said that for any gap-free graph $G$ with $reg(I(G)) = 3$ and for any $k geq 2$, $I(G)^k$ has a linear resolution. Moreover, we consider new conjectures related to the regularity of powers of edge ideals of gap-free graphs.
111 - Li Xu , Guangjun Zhu , Hong Wang 2019
In this paper we provide some exact formulas for projective dimension and the regularity of powers of edge ideals of vertex-weighted rooted forests. These formulas are functions of the weight of the vertices and the number of edges. We also give some examples to show that these formulas are related to direction selection and the assumptions about rooted forest such that $w(x)geq 2$ if $d(x) eq 1$ cannot be dropped.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا