No Arabic abstract
Liquid crystal networks exploit the coupling between the responsivity of liquid-crystalline mesogens, e.g., to electric fields, and the (visco)elastic properties of a polymer network. Because of this, these materials have been put forward for a wide array of applications, including responsive surfaces such as artificial skins and membranes. For such applications, the desired functional response must generally be realized under strict geometrical constraints, such as provided by supported thin films. To model such settings, we present a dynamical, spatially-heterogeneous Landau-type theory for electrically-actuated liquid crystal network films. We find that the response of the liquid crystal network permeates the film from top to bottom, and illustrate how this affects the time scale associated with macroscopic deformation. Finally, by linking our model parameters to experimental quantities, we suggest that the permeation rate can be controlled by varying the aspect ratio of the mesogens and their degree of orientational order when cross-linked into the polymer network, for which we predict a single optimum. Our results contribute specifically to the rational design of future applications involving transport or on-demand release of molecular cargo in liquid crystal network films.
Liquid crystal networks combine the orientational order of liquid crystals with the elastic properties of polymer networks, leading to a vast application potential in the field of responsive coatings, e.g., for haptic feedback, self-cleaning surfaces and static and dynamic pattern formation. Recent experimental work has further paved the way toward such applications by realizing the fast and reversible surface modulation of a liquid crystal network coating upon in-plane actuation with an AC electric field. Here, we construct a Landau-type theory for electrically-responsive liquid crystal networks and perform Molecular Dynamics simulations to explain the findings of these experiments and inform on rational design strategies. Qualitatively, the theory agrees with our simulations and reproduces the salient experimental features. We also provide a set of testable predictions: the aspect ratio of the nematogens, their initial orientational order when cross-linked into the polymer network and the cross-linking fraction of the network all increase the plasticization time required for the film to macroscopically deform. We demonstrate that the dynamic response to oscillating electric fields is characterized by two resonances, which can likewise be influenced by varying these parameters, providing an experimental handle to fine-tune device design.
In both research and industrial settings spin coating is extensively used to prepare highly uniform thin polymer films. However, under certain conditions, spin coating results in films with non-uniform surface morphologies. Although the spin coating process has been extensively studied, the origin of these morphologies is not fully understood and the formation of non-uniform spincast films remains a practical problem. Here we report on experiments demonstrating that the formation of surface instabilities during spin coating is dependent on temperature. Our results suggest that non-uniform spincast films form as a result of the Marangoni effect, which describes flow due to surface tension gradients. We find that both the wavelength and amplitude of the pattern increase with temperature. Finally, and most important from a practical viewpoint, the non-uniformities in the film thickness can be entirely avoided simply by lowering the spin coating temperature.
Using computer simulations, we establish that the structure of a supercooled binary atomic liquid mixture consists of common neighbour structures similar to those found in the equilibrium crystal phase, a Laves structure. Despite the large accumulation of crystal-like structure, we establish that the supercooled liquid represents a true metastable liquid and that liquid can borrow crystal structure without being destabilized. We consider whether this feature might be the origin of all instances of liquids of a strongly favoured local structure.
Auxetic materials have the counter-intuitive property of expanding rather than contracting perpendicular to an applied stretch, formally they have negative Poissons Ratios (PRs).[1,2] This results in properties such as enhanced energy absorption and indentation resistance, which means that auxetics have potential for applications in areas from aerospace to biomedical industries.[3,4] Existing synthetic auxetics are all created by carefully structuring porous geometries from positive PR materials. Crucially, their geometry causes the auxeticity.[3,4] The necessary porosity weakens the material compared to the bulk and the structure must be engineered, for example, by using resource-intensive additive manufacturing processes.[1,5] A longstanding goal for researchers has been the development of a synthetic material that has intrinsic auxetic behaviour. Such molecular auxetics would avoid porosity-weakening and their very existence implies chemical tuneability.[1,4-9] However molecular auxeticity has never previously been proven for a synthetic material.[6,7] Here we present a synthetic molecular auxetic based on a monodomain liquid crystal elastomer (LCE). When stressed perpendicular to the alignment direction, the LCE becomes auxetic at strains greater than approximately 0.8 with a minimum PR of -0.8. The critical strain for auxeticity coincides with the occurrence of a negative liquid crystal order parameter (LCOP). We show the auxeticity agrees with theoretical predictions derived from the Warner and Terentjev theory of LCEs.[10] This demonstration of a synthetic molecular auxetic represents the origin of a new approach to producing molecular auxetics with a range of physical properties and functional behaviours. Further, it demonstrates a novel feature of LCEs and a route for realisation of the molecular auxetic technologies that have been proposed over the years.
The stability of the equilibrium configurations of a nematic liquid crystal confined between two coaxial cylinders is analysed when a radial electric field is applied and the flexoelectric effect is taken into account. The threshold for perturbations depending only on the radius r in the cylindrical coordinate system and strong boundary conditions is studied. A new type of orientational transition caused by pure flexoelectric effect is found.