Do you want to publish a course? Click here

An Information Theory-inspired Strategy for Automatic Network Pruning

89   0   0.0 ( 0 )
 Added by Yuexiao Ma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite superior performance on many computer vision tasks, deep convolution neural networks are well known to be compressed on devices that have resource constraints. Most existing network pruning methods require laborious human efforts and prohibitive computation resources, especially when the constraints are changed. This practically limits the application of model compression when the model needs to be deployed on a wide range of devices. Besides, existing methods are still challenged by the missing theoretical guidance. In this paper we propose an information theory-inspired strategy for automatic model compression. The principle behind our method is the information bottleneck theory, i.e., the hidden representation should compress information with each other. We thus introduce the normalized Hilbert-Schmidt Independence Criterion (nHSIC) on network activations as a stable and generalized indicator of layer importance. When a certain resource constraint is given, we integrate the HSIC indicator with the constraint to transform the architecture search problem into a linear programming problem with quadratic constraints. Such a problem is easily solved by a convex optimization method with a few seconds. We also provide a rigorous proof to reveal that optimizing the normalized HSIC simultaneously minimizes the mutual information between different layers. Without any search process, our method achieves better compression tradeoffs comparing to the state-of-the-art compression algorithms. For instance, with ResNet-50, we achieve a 45.3%-FLOPs reduction, with a 75.75 top-1 accuracy on ImageNet. Codes are avaliable at https://github.com/MAC-AutoML/ITPruner/tree/master.



rate research

Read More

In this paper, we propose a novel meta learning approach for automatic channel pruning of very deep neural networks. We first train a PruningNet, a kind of meta network, which is able to generate weight parameters for any pruned structure given the target network. We use a simple stochastic structure sampling method for training the PruningNet. Then, we apply an evolutionary procedure to search for good-performing pruned networks. The search is highly efficient because the weights are directly generated by the trained PruningNet and we do not need any finetuning at search time. With a single PruningNet trained for the target network, we can search for various Pruned Networks under different constraints with little human participation. Compared to the state-of-the-art pruning methods, we have demonstrated superior performances on MobileNet V1/V2 and ResNet. Codes are available on https://github.com/liuzechun/MetaPruning.
Network pruning can significantly reduce the computation and memory footprint of large neural networks. To achieve a good trade-off between model size and performance, popular pruning techniques usually rely on hand-crafted heuristics and require manually setting the compression ratio for each layer. This process is typically time-consuming and requires expert knowledge to achieve good results. In this paper, we propose NAP, a unified and automatic pruning framework for both fine-grained and structured pruning. It can find out unimportant components of a network and automatically decide appropriate compression ratios for different layers, based on a theoretically sound criterion. Towards this goal, NAP uses an efficient approximation of the Hessian for evaluating the importances of components, based on a Kronecker-factored Approximate Curvature method. Despite its simpleness to use, NAP outperforms previous pruning methods by large margins. For fine-grained pruning, NAP can compress AlexNet and VGG16 by 25x, and ResNet-50 by 6.7x without loss in accuracy on ImageNet. For structured pruning (e.g. channel pruning), it can reduce flops of VGG16 by 5.4x and ResNet-50 by 2.3x with only 1% accuracy drop. More importantly, this method is almost free from hyper-parameter tuning and requires no expert knowledge. You can start NAP and then take a nap!
Fully-automatic execution is the ultimate goal for many Computer Vision applications. However, this objective is not always realistic in tasks associated with high failure costs, such as medical applications. For these tasks, semi-automatic methods allowing minimal effort from users to guide computer algorithms are often preferred due to desirable accuracy and performance. Inspired by the practicality and applicability of the semi-automatic approach, this paper proposes a novel deep neural network architecture, namely SideInfNet that effectively integrates features learnt from images with side information extracted from user annotations. To evaluate our method, we applied the proposed network to three semantic segmentation tasks and conducted extensive experiments on benchmark datasets. Experimental results and comparison with prior work have verified the superiority of our model, suggesting the generality and effectiveness of the model in semi-automatic semantic segmentation.
Network compression has been widely studied since it is able to reduce the memory and computation cost during inference. However, previous methods seldom deal with complicated structures like residual connections, group/depth-wise convolution and feature pyramid network, where channels of multiple layers are coupled and need to be pruned simultaneously. In this paper, we present a general channel pruning approach that can be applied to various complicated structures. Particularly, we propose a layer grouping algorithm to find coupled channels automatically. Then we derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels. Moreover, we find that inference speedup on GPUs is more correlated with the reduction of memory rather than FLOPs, and thus we employ the memory reduction of each channel to normalize the importance. Our method can be used to prune any structures including those with coupled channels. We conduct extensive experiments on various backbones, including the classic ResNet and ResNeXt, mobile-friendly MobileNetV2, and the NAS-based RegNet, both on image classification and object detection which is under-explored. Experimental results validate that our method can effectively prune sophisticated networks, boosting inference speed without sacrificing accuracy.
Based on filter magnitude ranking (e.g. L1 norm), conventional filter pruning methods for Convolutional Neural Networks (CNNs) have been proved with great effectiveness in computation load reduction. Although effective, these methods are rarely analyzed in a perspective of filter functionality. In this work, we explore the filter pruning and the retraining through qualitative filter functionality interpretation. We find that the filter magnitude based method fails to eliminate the filters with repetitive functionality. And the retraining phase is actually used to reconstruct the remained filters for functionality compensation for the wrongly-pruned critical filters. With a proposed functionality-oriented pruning method, we further testify that, by precisely addressing the filter functionality redundancy, a CNN can be pruned without considerable accuracy drop, and the retraining phase is unnecessary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا