Do you want to publish a course? Click here

Polyaks convexity theorem, Yuans lemma and S-lemma: extensions and applications

165   0   0.0 ( 0 )
 Added by Yong Xia
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We extend Polyaks theorem on the convexity of joint numerical range from three to any number of quadratic forms on condition that they can be generated by three quadratic forms with a positive definite linear combination. Our new result covers the fundamental Diness theorem. As applications, we further extend Yuans lemma and S-lemma, respectively. Our extended Yuans lemma is used to build a more generalized assumption than that of Haeser (J. Optim. Theory Appl. 174(3): 641-649, 2017), under which the standard second-order necessary optimality condition holds at local minimizer. The extended S-lemma reveals strong duality of homogeneous quadratic optimization problem with two bilateral quadratic constraints.



rate research

Read More

71 - Meijia Yang , Yong Xia , Shu Wang 2021
We unify nonlinear Farkas lemma and S-lemma to a generalized alternative theorem for nonlinear nonconvex system. It provides fruitful applications in globally solving nonconvex non-quadratic optimization problems via revealing the hidden convexity.
The concept of dissipativity, as introduced by Jan Willems, is one of the cornerstones of systems and control theory. Typically, dissipativity properties are verified by resorting to a mathematical model of the system under consideration. In this paper, we aim at assessing dissipativity by computing storage functions for linear systems directly from measured data. As our main contributions, we provide conditions under which dissipativity can be ascertained from a finite collection of noisy data samples. Three different noise models will be considered that can capture a variety of situations, including the cases that the data samples are noise-free, the energy of the noise is bounded, or the individual noise samples are bounded. All of our conditions are phrased in terms of data-based linear matrix inequalities, which can be readily solved using existing software packages.
178 - Shicheng Xu , Xuchao Yao 2019
We prove the generalized Margulis lemma with a uniform index bound on an Alexandrov $n$-space $X$ with curvature bounded below, i.e., small loops at $pin X$ generate a subgroup of the fundamental group of unit ball $B_1(p)$ that contains a nilpotent subgroup of index $le w(n)$, where $w(n)$ is a constant depending only on the dimension $n$. The proof is based on the main ideas of V.~Kapovitch, A.~Petrunin, and W.~Tuschmann, and the following results: (1) We prove that any regular almost Lipschitz submersion constructed by Yamaguchi on a collapsed Alexandrov space with curvature bounded below is a Hurewicz fibration. We also prove that such fibration is uniquely determined up to a homotopy equivalence. (2) We give a detailed proof on the gradient push, improving the universal pushing time bound given by V.~Kapovitch, A.~Petrunin, and W.~Tuschmann, and justifying in a specific way that the gradient push between regular points can always keep away from extremal subsets.
101 - Akshay S. Rane 2021
We prove the Zabreikos lemma in 2-Banach spaces. As an application we shall prove a version of the closed graph theorem and open mapping theorem.
113 - Joa Weber 2015
We reprove the $lambda$-Lemma for finite dimensional gradient flows by generalizing the well-known contraction method proof of the local (un)stable manifold theorem. This only relies on the forward Cauchy problem. We obtain a rather quantitative description of (un)stable foliations which allows to equip each leaf with a copy of the flow on the central leaf -- the local (un)stable manifold. These dynamical thickenings are key tools in our recent work [Web]. The present paper provides their construction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا