No Arabic abstract
Stereo-based 3D detection aims at detecting 3D object bounding boxes from stereo images using intermediate depth maps or implicit 3D geometry representations, which provides a low-cost solution for 3D perception. However, its performance is still inferior compared with LiDAR-based detection algorithms. To detect and localize accurate 3D bounding boxes, LiDAR-based models can encode accurate object boundaries and surface normal directions from LiDAR point clouds. However, the detection results of stereo-based detectors are easily affected by the erroneous depth features due to the limitation of stereo matching. To solve the problem, we propose LIGA-Stereo (LiDAR Geometry Aware Stereo Detector) to learn stereo-based 3D detectors under the guidance of high-level geometry-aware representations of LiDAR-based detection models. In addition, we found existing voxel-based stereo detectors failed to learn semantic features effectively from indirect 3D supervisions. We attach an auxiliary 2D detection head to provide direct 2D semantic supervisions. Experiment results show that the above two strategies improved the geometric and semantic representation capabilities. Compared with the state-of-the-art stereo detector, our method has improved the 3D detection performance of cars, pedestrians, cyclists by 10.44%, 5.69%, 5.97% mAP respectively on the official KITTI benchmark. The gap between stereo-based and LiDAR-based 3D detectors is further narrowed.
3D detection plays an indispensable role in environment perception. Due to the high cost of commonly used LiDAR sensor, stereo vision based 3D detection, as an economical yet effective setting, attracts more attention recently. For these approaches based on 2D images, accurate depth information is the key to achieve 3D detection, and most existing methods resort to a preliminary stage for depth estimation. They mainly focus on the global depth and neglect the property of depth information in this specific task, namely, sparsity and locality, where exactly accurate depth is only needed for these 3D bounding boxes. Motivated by this finding, we propose a stereo-image based anchor-free 3D detection method, called structure-aware stereo 3D detector (termed as SIDE), where we explore the instance-level depth information via constructing the cost volume from RoIs of each object. Due to the information sparsity of local cost volume, we further introduce match reweighting and structure-aware attention, to make the depth information more concentrated. Experiments conducted on the KITTI dataset show that our method achieves the state-of-the-art performance compared to existing methods without depth map supervision.
Real world applications of stereo depth estimation require models that are robust to dynamic variations in the environment. Even though deep learning based stereo methods are successful, they often fail to generalize to unseen variations in the environment, making them less suitable for practical applications such as autonomous driving. In this work, we introduce a learning-to-adapt framework that enables deep stereo methods to continuously adapt to new target domains in an unsupervised manner. Specifically, our approach incorporates the adaptation procedure into the learning objective to obtain a base set of parameters that are better suited for unsupervised online adaptation. To further improve the quality of the adaptation, we learn a confidence measure that effectively masks the errors introduced during the unsupervised adaptation. We evaluate our method on synthetic and real-world stereo datasets and our experiments evidence that learning-to-adapt is, indeed beneficial for online adaptation on vastly different domains.
Learning-based multi-view stereo (MVS) methods have demonstrated promising results. However, very few existing networks explicitly take the pixel-wise visibility into consideration, resulting in erroneous cost aggregation from occluded pixels. In this paper, we explicitly infer and integrate the pixel-wise occlusion information in the MVS network via the matching uncertainty estimation. The pair-wise uncertainty map is jointly inferred with the pair-wise depth map, which is further used as weighting guidance during the multi-view cost volume fusion. As such, the adverse influence of occluded pixels is suppressed in the cost fusion. The proposed framework Vis-MVSNet significantly improves depth accuracies in the scenes with severe occlusion. Extensive experiments are performed on DTU, BlendedMVS, and Tanks and Temples datasets to justify the effectiveness of the proposed framework.
Convolutional neural network (CNN)-based stereo matching approaches generally require a dense cost volume (DCV) for disparity estimation. However, generating such cost volumes is computationally-intensive and memory-consuming, hindering CNN training and inference efficiency. To address this problem, we propose SCV-Stereo, a novel CNN architecture, capable of learning dense stereo matching from sparse cost volume (SCV) representations. Our inspiration is derived from the fact that DCV representations are somewhat redundant and can be replaced with SCV representations. Benefiting from these SCV representations, our SCV-Stereo can update disparity estimations in an iterative fashion for accurate and efficient stereo matching. Extensive experiments carried out on the KITTI Stereo benchmarks demonstrate that our SCV-Stereo can significantly minimize the trade-off between accuracy and efficiency for stereo matching. Our project page is https://sites.google.com/view/scv-stereo.
In this paper, we study the problem of 3D object detection from stereo images, in which the key challenge is how to effectively utilize stereo information. Different from previous methods using pixel-level depth maps, we propose employing 3D anchors to explicitly construct object-level correspondences between the regions of interest in stereo images, from which the deep neural network learns to detect and triangulate the targeted object in 3D space. We also introduce a cost-efficient channel reweighting strategy that enhances representational features and weakens noisy signals to facilitate the learning process. All of these are flexibly integrated into a solid baseline detector that uses monocular images. We demonstrate that both the monocular baseline and the stereo triangulation learning network outperform the prior state-of-the-arts in 3D object detection and localization on the challenging KITTI dataset.