No Arabic abstract
With the advent of the first luminous sources at Cosmic Dawn (CD), the redshifted 21-cm signal, from the neutral hydrogen in the Inter-Galactic Medium (IGM), is predicted to undergo a transition from absorption to emission against the CMB. Using simulations, we show that the redshift evolution of the sign and the magnitude of the 21-cm bispectrum can disentangle the contributions from Ly$alpha$ coupling and X-ray heating of the IGM, the two most dominant processes which drive this transition. This opens a new avenue to probe the first luminous sources and the IGM physics at CD.
Upcoming measurements of the 21-cm line of neutral hydrogen will open a new observational window into the early stages of structure growth, providing a unique opportunity for probing large-scale cosmological signatures using the small-scale signals from the first stars. In this paper we evaluate the detection significance of compensated isocurvature perturbations (CIPs) from observations of the 21-cm hydrogen-line during the cosmic-dawn era. CIPs are modulations of the relative baryon and dark-matter density that leave the total matter density unchanged. We find that, under different assumptions for feedback and foregrounds, the ongoing HERA and upcoming SKA1-low experiments will provide constraints on uncorrelated CIPs at the level of $sigma(A_{rm CIP})= 10^{-3}-10^{-4}$, comparable to the sensitivity of upcoming CMB experiments, and potentially exceeding the constraints from cosmic-variance limited BAO surveys.
Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preliminary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signal: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that that the SKA1-low should be able to detect ionized bubbles of radius $R_b gtrsim 10$ Mpc with $sim 100$ hr of observations at redshift $z sim 8$ provided that the mean outside neutral Hydrogen fraction $ x_{rm HI} gtrsim 0.5$. We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. 2011. We find that a $5 sigma$ detection is possible with $600$ hr of SKA1-low observations if the QSO age and the outside $ x_{rm HI} $ are at least $sim 2 times 10^7$ Myr and $sim 0.2$ respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly-$alpha$ sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total $sim 1000$ hr of observations, SKA1-low should be able to detect those sources individually with a $sim 9 sigma$ significance at redshift $z=15$. We summarize how the SNR changes with various parameters related to the source properties.
We present a study of the 21-cm signal bispectrum (which quantifies the non-Gaussianity in the signal) from the Cosmic Dawn (CD). For our analysis, we have simulated the 21-cm signal using radiative transfer code GRIZZLY, while considering two types of sources (mini-QSOs and HMXBs) for Ly$alpha$ coupling and the X-ray heating of the IGM. Using this simulated signal, we have, for the first time, estimated the CD 21-cm bispectra for all unique $k$-triangles and for a range of $k$ modes. We observe that the redshift evolution of the bispectra magnitude and sign follow a generic trend for both source models. However, the redshifts at which the bispectra magnitude reach their maximum and minimum values and show their sign reversal depends on the source model. When the Ly$alpha$ coupling and the X-ray heating of the IGM occur simultaneously, we observe two consecutive sign reversals in the bispectra for small $k$-triangles (irrespective of the source models). One arising at the beginning of the IGM heating and the other at the end of Ly$alpha$ coupling saturation. This feature can be used in principle to constrain the CD history and/or to identify the specific CD scenarios. We also quantify the impact of the spin temperature ($T_{rm S}$) fluctuations on the bispectra. We find that $T_{rm S}$ fluctuations have maximum impact on the bispectra magnitude for small $k$-triangles and at the stage when Ly$alpha$ coupling reaches saturation. Furthermore, we are also the first to quantify the impact of redshift space distortions (RSD), on the CD bispectra. We find that the impact of RSD on the CD 21-cm bispectra is significant ($> 20%$) and the level depends on the stages of the CD and the $k$-triangles for which the bispectra are being estimated.
We study prospects of constraining the primordial magnetic field (PMF) and its evolution during the dark ages and cosmic dawn in light of EDGES 21-cm signal. Our analysis has been carried out on a `colder IGM background which is one of the promising avenues to interpret the EDGES signal. We consider the dark matter-baryon interactions for the excess cooling. We find that the colder IGM suppresses both the residual free electron fraction and the coupling coefficient between the ionised and neutral components. The Compton heating also gets affected in colder IGM background. Consequently, the IGM heating rate due to the PMF enhances compared to the standard scenario. Thus, a significant fraction of the magnetic energy, for $B_0 lesssim 0.5 , {rm nG}$, gets transferred to the IGM and the magnetic field decays at a much faster rate compared to the simple $(1+z)^2$ scaling during the dark ages and cosmic dawn. This low PMF is an unlikely candidate for explaining the rise of the EDGES absorption signal at lower redshift. We also see that the PMF and DM-baryon interaction together introduces a plateau-like feature in the redshift evolution of the IGM temperature. We find that the upper limit on the PMF depends on the underlying DM-baryon interaction. Higher PMF can be allowed when the interaction cross-section is higher and/or the DM particle mass is lower. Our study shows that the PMF with $B_0$ up to $sim 0.4 , {rm nG}$, which is ruled out in the standard model, can be allowed if DM-baryon interaction with suitable cross-section and DM mass is considered.
The cosmic dawn refers to the period of the Universes history when stars and black holes first formed and began heating and ionizing hydrogen in the intergalactic medium (IGM). Though exceedingly difficult to detect directly, the first stars and black holes can be constrained indirectly through measurements of the cosmic 21-cm background, which traces the ionization state and temperature of intergalactic hydrogen gas. In this white paper, we focus on the science case for such observations, in particular those targeting redshifts z $gtrsim$ 10 when the IGM is expected to be mostly neutral. 21-cm observations provide a unique window into this epoch and are thus critical to advancing first star and black hole science in the next decade.