Bottomonium suppression and flow in heavy-ion collisions


Abstract in English

The strong suppression of bottomonia production in ultra-relativistic heavy-ion collisions is a smoking gun for the creation of a deconfined quark-gluon plasma (QGP). In this proceedings contribution, I review recent work that aims to provide a more comprehensive and systematic understanding of bottomonium dynamics in the QGP through the use of pNRQCD and an open quantum systems approach. This approach allows one to evolve the heavy-quarkonium reduced density matrix, taking into account non-unitary effective Hamiltonian evolution of the wave-function and quantum jumps between different angular momentum and color states. In the case of a strong coupled QGP in which E << T,m_D << 1/a_0, the corresponding evolution equation is Markovian and can therefore be mapped to a Lindblad evolution equation. To solve the resulting Lindblad equation, we make use of a stochastic unraveling called the quantum trajectories algorithm and couple the non-abelian quantum evolution to a realistic 3+1D viscous hydrodynamical background. Using a large number of Monte-Carlo sampled bottomonium trajectories, we make predictions for bottomonium R_AA and elliptic flow as a function of centrality and transverse momentum and compare to data collected by the ALICE, ATLAS, and CMS collaborations.

Download