Do you want to publish a course? Click here

Global well-posedness and regularity of 3D Burgers equation with multiplicative noise

129   0   0.0 ( 0 )
 Added by Guoli Zhou
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we develop low regularity theory for 3D Burgers equation perturbed by a linear multiplicative stochastic force. This method is new and essentially different from the deterministic partial differential equations(PDEs). Our results and method can be widely applied to other stochastic hydrodynamic equations and the deterministic PDEs. As a further study, we establish a random version of maximum principle for random 3D Burgers equations, which will be an important tool for the study of 3D stochastic Burgers equations. As we know establishing moment estimates for highly nonlinear stochastic hydrodynamic equations is difficult. But moment estimates are very important for us to study the probabilistic properties and long-time behavior for the stochastic systems. Here, the random maximum principle helps us to achieve some important moment estimates for 3D stochastic Burgers equations and lays a solid foundation for the further study of 3D stochastic Burgers equations.



rate research

Read More

244 - Masato Hoshino 2017
We show the global-in-time well-posedness of the complex Ginzburg-Landau (CGL) equation with a space-time white noise on the 3-dimensional torus. Our method is based on [14], where Mourrat and Weber showed the global well-posedness for the dynamical $Phi_3^4$ model. We prove a priori $L^{2p}$ estimate for the paracontrolled solution as in the deterministic case [5].
216 - Zihua Guo , Baoxiang Wang 2008
Considering the Cauchy problem for the Korteweg-de Vries-Burgers equation begin{eqnarray*} u_t+u_{xxx}+epsilon |partial_x|^{2alpha}u+(u^2)_x=0, u(0)=phi, end{eqnarray*} where $0<epsilon,alphaleq 1$ and $u$ is a real-valued function, we show that it is globally well-posed in $H^s (s>s_alpha)$, and uniformly globally well-posed in $H^s (s>-3/4)$ for all $epsilon in (0,1)$. Moreover, we prove that for any $T>0$, its solution converges in $C([0,T]; H^s)$ to that of the KdV equation if $epsilon$ tends to 0.
We prove existence and uniqueness of strong solutions for a class of semilinear stochastic evolution equations driven by general Hilbert space-valued semimartingales, with drift equal to the sum of a linear maximal monotone operator in variational form and of the superposition operator associated to a random time-dependent monotone function defined on the whole real line. Such a function is only assumed to satisfy a very mild symmetry-like condition, but its rate of growth towards infinity can be arbitrary. Moreover, the noise is of multiplicative type and can be path-dependent. The solution is obtained via a priori estimates on solutions to regularized equations, interpreted both as stochastic equations as well as deterministic equations with random coefficients, and ensuing compactness properties. A key role is played by an infinite-dimensional Doob-type inequality due to Metivier and Pellaumail.
The Cauchy problem for a scalar conservation laws admits a unique entropy solution when the data $u_0$ is a bounded measurable function (Kruzhkov). The semi-group $(S_t)_{tge0}$ is contracting in the $L^1$-distance. For the multi-dimensional Burgers equation, we show that $(S_t)_{tge0}$ extends uniquely as a continuous semi-group over $L^p(mathbb{R}^n)$ whenever $1le p<infty$, and $u(t):=S_tu_0$ is actually an entropy solution to the Cauchy problem. When $ple qle infty$ and $t>0$, $S_t$ actually maps $L^p(mathbb{R}^n)$ into $L^q(mathbb{R}^n)$. These results are based upon new dispersive estimates. The ingredients are on the one hand Compensated Integrability, and on the other hand a De Giorgi-type iteration.
71 - Elena Kopylova 2019
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا