Silting reduction in extriangulated categories


Abstract in English

We introduce pre-silting and silting subcategories in extriangulated categories and generalize the silting theory in triangulated categories. We prove that the silting reduction $mathcal B/({rm thick}mathcal W)$ of an extriangulated category $mathcal B$ with respect to a pre-silting subcategory $mathcal W$ can be realized as a certain subfactor category of $mathcal B$. This generalizes the result by Iyama-Yang. In particular, for a Gorenstein algebra, we get the relative version of the description of the singularity category due to Happel and Chen-Zhang by this reduction.

Download