No Arabic abstract
Unsupervised Domain Adaptation (UDA) can transfer knowledge from labeled source data to unlabeled target data of the same categories. However, UDA for first-person action recognition is an under-explored problem, with lack of datasets and limited consideration of first-person video characteristics. This paper focuses on addressing this problem. Firstly, we propose two small-scale first-person video domain adaptation datasets: ADL$_{small}$ and GTEA-KITCHEN. Secondly, we introduce channel-temporal attention blocks to capture the channel-wise and temporal-wise relationships and model their inter-dependencies important to first-person vision. Finally, we propose a Channel-Temporal Attention Network (CTAN) to integrate these blocks into existing architectures. CTAN outperforms baselines on the two proposed datasets and one existing dataset EPIC$_{cvpr20}$.
Although various image-based domain adaptation (DA) techniques have been proposed in recent years, domain shift in videos is still not well-explored. Most previous works only evaluate performance on small-scale datasets which are saturated. Therefore, we first propose a larger-scale dataset with larger domain discrepancy: UCF-HMDB_full. Second, we investigate different DA integration methods for videos, and show that simultaneously aligning and learning temporal dynamics achieves effective alignment even without sophisticated DA methods. Finally, we propose Temporal Attentive Adversarial Adaptation Network (TA3N), which explicitly attends to the temporal dynamics using domain discrepancy for more effective domain alignment, achieving state-of-the-art performance on three video DA datasets. The code and data are released at http://github.com/cmhungsteve/TA3N.
Partial Domain Adaptation (PDA) is a practical and general domain adaptation scenario, which relaxes the fully shared label space assumption such that the source label space subsumes the target one. The key challenge of PDA is the issue of negative transfer caused by source-only classes. For videos, such negative transfer could be triggered by both spatial and temporal features, which leads to a more challenging Partial Video Domain Adaptation (PVDA) problem. In this paper, we propose a novel Partial Adversarial Temporal Attentive Network (PATAN) to address the PVDA problem by utilizing both spatial and temporal features for filtering source-only classes. Besides, PATAN constructs effective overall temporal features by attending to local temporal features that contribute more toward the class filtration process. We further introduce new benchmarks to facilitate research on PVDA problems, covering a wide range of PVDA scenarios. Empirical results demonstrate the state-of-the-art performance of our proposed PATAN across the multiple PVDA benchmarks.
Although various image-based domain adaptation (DA) techniques have been proposed in recent years, domain shift in videos is still not well-explored. Most previous works only evaluate performance on small-scale datasets which are saturated. Therefore, we first propose two large-scale video DA datasets with much larger domain discrepancy: UCF-HMDB_full and Kinetics-Gameplay. Second, we investigate different DA integration methods for videos, and show that simultaneously aligning and learning temporal dynamics achieves effective alignment even without sophisticated DA methods. Finally, we propose Temporal Attentive Adversarial Adaptation Network (TA3N), which explicitly attends to the temporal dynamics using domain discrepancy for more effective domain alignment, achieving state-of-the-art performance on four video DA datasets (e.g. 7.9% accuracy gain over Source only from 73.9% to 81.8% on HMDB --> UCF, and 10.3% gain on Kinetics --> Gameplay). The code and data are released at http://github.com/cmhungsteve/TA3N.
We consider the problem of video-based person re-identification. The goal is to identify a person from videos captured under different cameras. In this paper, we propose an efficient spatial-temporal attention based model for person re-identification from videos. Our method generates an attention score for each frame based on frame-level features. The attention scores of all frames in a video are used to produce a weighted feature vector for the input video. Unlike most existing deep learning methods that use global representation, our approach focuses on attention scores. Extensive experiments on two benchmark datasets demonstrate that our method achieves the state-of-the-art performance. This is a technical report.
The main progress for action segmentation comes from densely-annotated data for fully-supervised learning. Since manual annotation for frame-level actions is time-consuming and challenging, we propose to exploit auxiliary unlabeled videos, which are much easier to obtain, by shaping this problem as a domain adaptation (DA) problem. Although various DA techniques have been proposed in recent years, most of them have been developed only for the spatial direction. Therefore, we propose Mixed Temporal Domain Adaptation (MTDA) to jointly align frame- and video-level embedded feature spaces across domains, and further integrate with the domain attention mechanism to focus on aligning the frame-level features with higher domain discrepancy, leading to more effective domain adaptation. Finally, we evaluate our proposed methods on three challenging datasets (GTEA, 50Salads, and Breakfast), and validate that MTDA outperforms the current state-of-the-art methods on all three datasets by large margins (e.g. 6.4% gain on F1@50 and 6.8% gain on the edit score for GTEA).