The study of 3D hyperspectral image (HSI) reconstruction refers to the inverse process of snapshot compressive imaging, during which the optical system, e.g., the coded aperture snapshot spectral imaging (CASSI) system, captures the 3D spatial-spectral signal and encodes it to a 2D measurement. While numerous sophisticated neural networks have been elaborated for end-to-end reconstruction, trade-offs still need to be made among performance, efficiency (training and inference time), and feasibility (the ability of restoring high resolution HSI on limited GPU memory). This raises a challenge to design a new baseline to conjointly meet the above requirements. In this paper, we fill in this blank by proposing a Spatial/Spectral Invariant Residual U-Net, namely SSI-ResU-Net. It differentiates with U-Net in three folds--1) scale/spectral-invariant learning, 2) nested residual learning, and 3) computational efficiency. Benefiting from these three modules, the proposed SSI-ResU-Net outperforms the current state-of-the-art method TSA-Net by over 3 dB in PSNR and 0.036 in SSIM while only using 2.82% trainable parameters. To the greatest extent, SSI-ResU-Net achieves competing performance with over 77.3% reduction in terms of floating-point operations (FLOPs), which for the first time, makes high-resolution HSI reconstruction feasible under practical application scenarios. Code and pre-trained models are made available at https://github.com/Jiamian-Wang/HSI_baseline.