Prediction of Students performance with Artificial Neural Network using Demographic Traits


Abstract in English

Many researchers have studied student academic performance in supervised and unsupervised learning using numerous data mining techniques. Neural networks often need a greater collection of observations to achieve enough predictive ability. Due to the increase in the rate of poor graduates, it is necessary to design a system that helps to reduce this menace as well as reduce the incidence of students having to repeat due to poor performance or having to drop out of school altogether in the middle of the pursuit of their career. It is therefore necessary to study each one as well as their advantages and disadvantages, so as to determine which is more efficient in and in what case one should be preferred over the other. The study aims to develop a system to predict student performance with Artificial Neutral Network using the student demographic traits so as to assist the university in selecting candidates (students) with a high prediction of success for admission using previous academic records of students granted admissions which will eventually lead to quality graduates of the institution. The model was developed based on certain selected variables as the input. It achieved an accuracy of over 92.3 percent, showing Artificial Neural Network potential effectiveness as a predictive tool and a selection criterion for candidates seeking admission to a university.

Download