No Arabic abstract
All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide provocative projections for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we offer potential futures for a next generation of disruptive approaches to define, quantify and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
Proteins tend to bury hydrophobic residues inside their core during the folding process to provide stability to the protein structure and to prevent aggregation. Nevertheless, proteins do expose some sticky hydrophobic residues to the solvent. These residues can play an important functional role, for example in protein-protein and membrane interactions. Here, we investigate how hydrophobic protein surfaces are by providing three measures for surface hydrophobicity: the total hydrophobic surface area, the relative hydrophobic surface area, and - using our MolPatch method - the largest hydrophobic patch. Secondly, we analyse how difficult it is to predict these measures from sequence: by adapting solvent accessibility predictions from NetSurfP2.0, we obtain well-performing prediction methods for the THSA and RHSA, while predicting LHP is more difficult. Finally, we analyse implications of exposed hydrophobic surfaces: we show that hydrophobic proteins typically have low expression, suggesting cells avoid an overabundance of sticky proteins.
Protein molecules can be approximated by discrete polygonal chains of amino acids. Standard topological tools can be applied to the smoothening of the polygons to introduce a topological classification of proteins, for example, using the self-linking number of the corresponding framed curves. In this paper we add new details to the standard classification. Known definitions of the self-linking number apply to non-singular framings: for example, the Frenet framing cannot be used if the curve has inflection points. Meanwhile in the discrete proteins the special points are naturally resolved. Consequently, a separate integer topological characteristics can be introduced, which takes into account the intrinsic features of the special points. For large number of proteins we compute integer topological indices associated with the singularities of the Frenet framing. We show how a version of the Calugareanus theorem is satisfied for the associated self-linking number of a discrete curve. Since the singularities of the Frenet framing correspond to the structural motifs of proteins, we propose topological indices as a technical tool for the description of the folding dynamics of proteins.
We analytically derive the lower bound of the total conformational energy of a protein structure by assuming that the total conformational energy is well approximated by the sum of sequence-dependent pairwise contact energies. The condition for the native structure achieving the lower bound leads to the contact energy matrix that is a scalar multiple of the native contact matrix, i.e., the so-called Go potential. We also derive spectral relations between contact matrix and energy matrix, and approximations related to one-dimensional protein structures. Implications for protein structure prediction are discussed.
We perform theoretical studies of stretching of 20 proteins with knots within a coarse grained model. The knots ends are found to jump to well defined sequential locations that are associated with sharp turns whereas in homopolymers they diffuse around and eventually slide off. The waiting times of the jumps are increasingly stochastic as the temperature is raised. Larger knots do not return to their native locations when a protein is released after stretching.
Molecular dynamics studies within a coarse-grained structure based model were used on two similar proteins belonging to the transcarbamylase family to probe the effects in the native structure of a knot. The first protein, N-acetylornithine transcarbamylase, contains no knot whereas human ormithine transcarbamylase contains a trefoil knot located deep within the sequence. In addition, we also analyzed a modified transferase with the knot removed by the appropriate change of a knot-making crossing of the protein chain. The studies of thermally- and mechanically-induced unfolding processes suggest a larger intrinsic stability of the protein with the knot.