Despite the recent advance of automated program verification, reasoning about recursive data structures remains as a challenge for verification tools and their backends such as SMT and CHC solvers. To address the challenge, we introduce the notion of symbolic automatic relations (SARs), which combines symbolic automata and automatic relations, and inherits their good properties such as the closure under Boolean operations. We consider the satisfiability problem for SARs, and show that it is undecidable in general, but that we can construct a sound (but incomplete) and automated satisfiability checker by a reduction to CHC solving. We discuss applications to SMT and CHC solving on data structures, and show the effectiveness of our approach through experiments.