Water Finds its Level: A Localized Method for the Multi-commodity Flow Problem


Abstract in English

This paper gives a localized method for the multi-commodity flow problem. We relax both the capacity constraints and flow conservation constraints, and introduce a congestion function $psi$ for each arc and $height$ function $h$ for each vertex and commodity. If the flow exceeds the capacity on arc $a$, arc $a$ would have a congestion cost. If the flow into the vertex $i$ is not equal to that out of the vertex for commodity $k$, vertex $i$ would have a height, which is positively related to the difference between the amount of the commodity $k$ into the vertex $i$ and that out of the vertex. Based on the height function $h$ and the congestion function $psi$, a new conception, stable pseudo-flow, is introduced, which satisfies the following conditions: ($mathrm{i}$) for any used arc of commodity $k$, the height difference between vertex $i$ and vertex $j$ is equal to the congestion of arc $(i,j)$; ($mathrm{ii}$) for any unused arc of commodity $k$, the height difference between vertex $i$ and vertex $j$ is less than or equal to the congestion of arc $(i,j)$. If the stable pseudo-flow is a nonzero-stable pseudo-flow, there exists no feasible solution for the multi-commodity flow problem; if the stable pseudo-flow is a zero-stable pseudo-flow, there exists feasible solution for the multi-commodity flow problem and the zero-stable pseudo-flow is the feasible solution. Besides, a non-linear description of the multi-commodity flow problem is given, whose solution is stable pseudo-flow. And the non-linear description could be rewritten as convex quadratic programming with box constraints. Rather than examine the entire network to find path, the conclusion in this paper shows that the multi-commodity flow problem could be solved in a localized manner by looking only at the vertex and its neighbors.

Download