No Arabic abstract
We consider a modified gravity framework for inflation by adding to the Einstein-Hilbert action a direct $f(phi)T$ term, where $phi$ is identified as the inflaton and $T$ is the trace of the energy-momentum tensor. The framework goes to Einstein gravity naturally when inflaton decays out. We investigate inflation dynamics in this $f(phi)T$ gravity (not to be confused with torsion-scalar coupled theories) on a general basis, and then apply it to three well-motivated inflationary models. We find that the predictions for the spectral tilt and the tensor-to-scalar ratio are sensitive to this new $f(phi)T$ term. This $f(phi)T$ gravity brings both chaotic and natural inflation into better agreement with data. For Starobinsky inflation, the coupling constant $alpha$ in $[-0.0026,0.0031]$ for $N=60$ is in Planck-allowed $2sigma$ region.
We study the black holes shadow for Schwarzschild - de Sitter and Kerr - de Sitter metrics with the contribution of the cosmological constant Lambda. Based on the reported parameters of the M87* black hole shadow we obtain constraints for the $Lambda$ and show the agreement with the cosmological data. It is shown that, the coupling of the Lambda-term with the spin parameter reveals peculiarities for the photon spheres and hence for the shadows. Within the parametrized post-Newtonian formalism the constraint for the corresponding Lambda-determined parameter is obtained.
In this paper we investigate the asymptotic dynamics of inflationary cosmological models that are based in scalar-tensor theories of gravity. Our main aim is to explore the global structure of the phase space in the framework of single-field inflation models. For this purpose we make emphasis in the adequate choice of the variables of the phase space. Our results indicate that, although single-field inflation is generic in the sense that the corresponding critical point in the phase space exists for a wide class of potentials, along given phase space orbits -- representing potential cosmic histories -- the occurrence of the inflationary stage is rather dependent on the initial conditions. We have been able to give quantitative estimates of the relative probability (RP) for initial conditions leading to slow-roll inflation. For the non-minimal coupling model with the $phi^2$-potential our rough estimates yield to an almost vanishing relative probability: $10^{-13},%lesssim RPll 10^{-8},%$. These bonds are greatly improved in the scalar-tensor models, including the Brans-Dicke theory, where the relative probability $1,%lesssim RPleq 100,%$. Hence slow-roll inflation is indeed a natural stage of the cosmic expansion in Brans-Dicke models of inflation. It is confirmed as well that the dynamics of vacuum Brans-Dicke theories with arbitrary potentials are non-chaotic.
Gravitational theories differing from General Relativity may explain the accelerated expansion of the Universe without a cosmological constant. However, to pass local gravitational tests, a screening mechanism is needed to suppress, on small scales, the fifth force driving the cosmological acceleration. We consider the simplest of these theories, i.e. a scalar-tensor theory with first-order derivative self-interactions, and study isolated (static and spherically symmetric) non-relativistic and relativistic stars. We produce screened solutions and use them as initial data for non-linear numerical evolutions in spherical symmetry. We find that these solutions are stable under large initial perturbations, as long as they do not cause gravitational collapse. When gravitational collapse is triggered, the characteristic speeds of the scalar evolution equation diverge, even before apparent black-hole or sound horizons form. This casts doubts on whether the dynamical evolution of screened stars may be predicted in these effective field theories.
We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different choices of Lagrangian density will apparently result in different phases of the Universe. By carefully choosing the variables, we prove that there is an attractor solution to describe the late time accelerating universe when the modified gravity is chosen in a simple power-law form of the curvature scalar. We further examine the temperature evolution based on the thermodynamic understanding of the model. Confronting the model with supernova type Ia data sets, we find that the nonminimally coupled theory of gravity is a viable model to describe the late time Universe acceleration.
By means of the Greens function method, we computed the spectral indices up to third order in the slow-roll approximation for a general scalar-tensor theory in both the Einstein and Jordan frames. Using quantities which are invariant under the conformal rescaling of the metric and transform as scalar functions under the reparametrization of the scalar field, we showed that the frames are equivalent up to this order due to the underlying assumptions. Nevertheless, care must be taken when defining the number of $e$-folds.